Radionuclide Production by High Intensity Proton Irradiation at the INR Linear Accelerator

<u>S.V. Ermolaev</u>, B.L. Zhuikov, V.M. Kokhanyuk, A.K. Skasyrskaya, O.V. Grekhov, Yu.V. Kiselev, A.N. Mirzojan, V.A. Moiseev, V.L. Serov, A.V. Feschenko, L.V. Kravchuk

Institute for Nuclear Research of Russian Academy of Sciences (Moscow, Russia)

Requirements for Large-Scale Radionuclide Production

Accelerators providing necessary proton energy and high intensity beams (many tens or hundreds μA)

Powerful facilities for target irradiation

Targets with specific technology of fabrication

Chemistry for recovery of "no-carrier-added" radionuclides from massive targets with a great number of different radionuclidic impurities

Accelerators and Facilities for Radionuclide Production at High Intensity Proton Beam of Intermediate Energy

- Institute for Nuclear Research (Troitsk, Russia) 160 MeV, 120 μA
- Los Alamos National Laboratory (NM, USA) 100 MeV, 200 μA
- Brookhaven National Laboratory (NY, USA) 200 MeV, 90 μA
- TRIUMF (Vancouver, Canada)
 110 MeV, 500 MeV, 50 μA
- iThemba Laboratory (Cape Town, South Africa) 66 MeV, 250 μA
- ARRONAX GIP (Nantes, France)

70 MeV, 2 x 100 µA

INR Linear Proton Accelerator

High-current proton linac

- located in Troitsk (Moscow)

- designed for H+ and H-, up to 600 MeV, beam current up to 0.5 mA

Multiple-Discipline Collaboration

- providing a wide range of fundamental and applied research

- including a radionuclide production facility

Beam Parameters at Radionuclide Production Facility

Proton beam energy at the facility: 158 MeV

Options: 143, 127, 113, 100, 94 MeV

Maximum beam current: 140 μA

Pulsed beam:

Peak beam current 14 mA

✓ 50 Hz

✓ 200 µsec pulse width

INR Radionuclide Production Facility (*constructed in 1992***)**

Floor Plan of INR Radionuclide Production Facility

- 1 Beam diagnostic system
- 2 Iron shielding cube
- 3 Target facility sliding into the cube
- 4 Manipulator for target handling
- 5 Lead window system
- 6 Main exit

- 7 Heat exchanger
- 8 Buffer vessel of cycling water cooling system
- 9 Main and reserve pumps

- 10 Ion exchange filters
- 11 Storage of used radioactive filters
- 12 Tambour with hatch for getting radioisotope products off
- 13 Reserve exit

Target Holder at INR Facility

Monitoring High Intensive Irradiation Conditions

Beam Parameters

- Beam current
- Beam shift (X and Y)
- Beam width
- Beam density (safety)
- Beam losses on the collimators

Cooling Water Parameters

- -Flow
- Pressure
- Temperature
- Electroconductivity
- Concentration of hydrogen released

Dose Rate Level

Cross-Section measurement

- Optimal proton energy range and target thickness
- Activity of the main radionuclide
- Radionuclide impurities

Cross Section Measurement

Monitor Data: taking into account proton straggling and scattering

^{117m}Sn Cross Section Determination:

Gas Chemical Separation of Radiotin from Antimony and Tellurium Radionuclides

^{117m}Sn: Estimation of Activity at EOB

¹¹³Sn Impurity: The Choice of Proton Energy Range

Targetry

Development of target design

- Testing beam shape and positioning
- Choice of materials for target and target shell
- Geometric parameters of target and estimation of beam losses
- Temperature generated in target and estimation of the most possible current of proton beam

Beam Shape and Positioning: Irradiation and Scanning AI Foils

RuPAC 2014

Slide 17

General Requirements for Target Material at High Intensity Beam

- High cross-section to form the desired radionuclide in the given particle energy range
- □ High abundance of the main producing material
- Availability and acceptable price (low energy protons or heavy ions – enriched stable isotopes, middle energy protons – natural mixture of isotopes)
- Known and acceptable non-radioactive impurities (especially, impurity of stable isotopes of the obtained element)
- High temperature stability
- High heat conductivity
- High radiation stability
- Low vapor pressure
- Low reaction ability with available material of shell, OR
- Low reaction ability with cooling water and its products of radiation decomposition
- Low toxicity of the main material and impurities
- Acceptability for radiochemical processing

A compromise is needed!

What Happens if the Target Requirements are not Fulfilled?

Not only thermal but also radiation impact Pure Aluminum

Graphite

Molybdenum

Target Geometry: distribution of protons absorbed inside the target

Rb Target (^{nat}Rb (p,x) ⁸²Sr): Metallic Rubidium in a Stainless Steel Shell

Diameter	25 mm
Thickness	30 mm
Angle	26 °

Target Geometry: distribution of "useless" protons inside the target

Target Geometry: beam losses through lateral surface of the target

Target Geometry: influence of X-shift of proton beam

Temperature and **Velocity Distributions** in Liquid Rb (100 μ A, σ = 4 mm)

Temperature Distribution

Heat Release in the Middle of Rb Target

at different sweeping parameters (R – sweeping amplitude)

Temperature Profiles Inside Rb Target

as a function of different sweeping parameters

Upgrade to Large-Scale Production

- Fabrication and irradiation of experimental targets
- Control of target integrity
- Optimization of target design for routine production

Experimental Sb Targets for ^{117m}Sn Production

Stainless Steel Shell Graphite Shell Ni-electroplated Molybdenum Shell

before irradiation

RuPAC 2014

Influence of Beam Sweeping on Rb Target Irradiation

Inlet Window

Not sweeping beam 8,000 μA·h 90 μA

Sweeping beam R ~ 2mm 10,000 μA·h 110 μA

Targets Developed and Irradiated at INR

Radionuclide Recovery and Application

Radionuclides Produced at INR

Possible Activity for Generation in One Accelerator Run at 120 μ A

Radionuclide	Half life	Target	Energy range, <i>M</i> eV	Bombardment period, <i>hours</i>	Activity produced in one run at EOB, <i>Ci</i>
⁸² Sr	25.5 d	Rb	100-40	250	5
²² Na	2.6 y	Mg, Al	150-35	250	2
¹⁰⁹ Cd	453 d	In	150-80	250	2
¹⁰³ Pd	17 d	Ag	150-50	250	50
⁶⁸ Ge	288 d	Ga, GaNi	50-15	250	0.5
^{117m} Sn	14 d	Sb, TiSb	150-40	250	3
⁷² Se	8.5 d	GaAs	60-45	250	3
⁶⁷ Cu	62 hr	Zn-68	150-70	100	10
⁶⁴ Cu	12.7 hr	Zn	150-40	15	15
²²⁵ Ac	10 d	Th	150-40	250	4
²²³ Ra	11.4 d	Th	150-40	250	13

Green – regular mass production

Blue – technology developed, test samples supplied to customers

Red – production method developed, technology under development

Processing INR Rb target and recovery ⁸²Sr at Los Alamos

Traditional chemical approach: Rb dissolution followed by ion exchange separation

Over 100 targets were irradiated and shipped

New Technology of ⁸²Sr Recovery Developed by INR

IPPE (Obninsk, RUSSIA)

Direct 82 Sr sorption from liquid metallic rubidium containing oxygen (0.1 – 4 wt.%)

ARRONAX (Nantes, FRANCE)

Development of On-Line ⁸²Sr Production

Construction of Sr/Rb-82 Generator (GR-01, INR)

 ${}^{82}Sr (25.5 d) \rightarrow {}^{82}Rb (1.3 min)$

Sr/Rb-82 generator in tungsten shielding container

Chromatographic column filled with α -hydrous tin oxide

PET Diagnostics using INR Sr/Rb-82 Generator

(RRC Radiology and Surgery Technologies, St. Petersburg)

Conclusion

Great interest in medical radionuclides - ⁸²Sr, ²²⁵Ac, ²²³Ra - ^{117m}Sn, ^{64, 67}Cu

Growing demand for development of **compact** accelerators providing an **intensive** beam of **medium-energy protons** and proper **targetry**

Cyclotron ARRONAX (Nantes, France)Proton energy70 MeVBeam Intensity2 375 μA

Designed and constructed by **IBA** (Belgium), fully operational since January 2011

IBA is going to install several 70 MeV cyclotrons in the nearest years (including one in Russia)

Thank you !

