DC-110 dedicated heavy ion cyclotron for industrial production of track membranes

B.N.Gikal, S.N.Dmitriev, G.G.Gulbekian, P.Yu.Apel, S.L.Bogomolov, O.N.Borisov, V.A.Buzmakov, A.A.Efremov, I.A.Ivanenko, N.Yu.Kazarinov, V.I.Kazacha, I.V. Kalagin, V.N.Melnikov, V.I.Mironov, S.V.Pashchenko, O.V.Semchenkova, V.A.Sokolov, N.F.Osipov, A.V.Tikhomirov, A.A.Fateev, M.V.Khabarov

> Joint Institute for Nuclear Research Flerov Laboratory of Nuclear Reactions

TRACK MEMBRANES

Production of track membranes using heavy ion accelerators is one of the most important areas of nuclear technology application.

1-st stage

2-nd stage

Polycarbonate track membranes

DC-110 dedicated heavy ion cyclotron for industrial production of track membranes

<u>The aim of the project:</u>

Industrial production of track membranes based on polymer films with a thickness of 30 μm .

Requirements to the accelerator:

- accelerated ions: Ar ,Kr ,Xe
- ion energy : 2.5 MeV/nucleon (fixed),
- intensity: ~ 1 p (6 10¹² particles/s)

<u>The equipment must be simple and reliable.</u>

Operating time in the mode of film irradiation - 7000 hours/year

Project start: August 2009. Commissioning: 2012.

Technical solutions underlying the DC-110 project

The first axial injection system at the U-200 cyclotron JINR (1986)

The DECRIS ion sources. Since 1994 11 sources were created at FLNR

DC-110

U-400. Axial injection line with double-bunching system (Lin+ Sin) (1995)

The DC-60 cyclotron (2006)

The IC-100 cyclotron (commissioning in 1985, reconstruction 2001-2002).

DC-110 cyclotron complex (2009-2012)

> The DC-110 cyclotron
> External ECR ion source
> Beam axial injection system
> 2 beam channels of accelerated ions
> Technological equipment:

vacuum system

- power and control
- cooling system
- RF system

The main beam parameters of the DC-110 cyclotron (project)

Ion source	ECR, 18 GHz		
Accelerated ions	⁴⁰ Ar ⁶⁺ ⁸⁶ Kr	13+ 132 Xe ²⁰⁺	
Mass-to-charge ratio (A/Z)	6,6667 6,61	54 6,6000	
Ion energy	2.5 MeV/nucleon		
Beam intensity in routine operation (1 p μ A \approx 6.10 ¹² pps)	ECR On the target		
Ar	10 * pμA <i>(60 μA)</i>	1* p μ Α (6* μΑ)	
Kr	10 pμA (130 μA)	1 pμA (13 μA)	
Хе	5 pμΑ (100 μΑ)	0,5 p μ A (10 μ A)	

*) - the beam intensity can be higher than the one indicated in the table

DECRIS-5 - ECR ion source of the DC-110 cyclotron

The maximum intensity of ion beams

Charge	8+	9+	11+	15+	18+	19+	20+
Ar	1200	750	300				
Kr				325	182	120	70
Xe							220

DC-110 cyclotron

Scheme of beam axial injection line at the cyclotron

Injection voltage - 20 kV

Designation	Type of element	Maximum field	
IS1	Solenoid	6.0 kG	
IM90	Analyzing magnet	1.9 kG	
IS2	Solenoid	2.0 kG	
IS3	Solenoid 5.0 kG		
Designation	Type of element	Voltage amplitude	
IBN1	Linear buncher	700-750 V 🖌	
IBN2	Sinusoidal buncher	300-350 V	

Magnetic structure of the DC-110 cyclotron

Azimuthal correction coils unit

Main parameters of DC-110 cyclotron	electromagnet
Size of magnet, L × W × H, [mm]	4940×2075×2840
Pole diameter	2000 mm
Interpole gap, [mm]	218
Number of sector pairs	4
Angular length of sector (helicity)	52º (0º)
Sector height, [mm]	65.5
Gap between sectors, [mm]	42
Gap between sector and pole, [mm]	24.5
Gap between central plugs, [mm]	112
Number of radial correction coils	0
Number of sets of azimuthal correction coils	2
Electromagnet weight	250 tons
Power consumption of main coil	51 kW
Maximal power consumption of correction coils	0.4 kW
Isochronous magnetic field at center, TI	1.67
Flutter	0.117
Betatron oscillation frequency - v_r - v_z	0.34 1.015

Beam extraction system of DC-110 cyclotron

Deflector

Magnetic channel

Magnetic structure of DC-110 cyclotron

Influence of the magnetic channel on cyclotron magnetic field

Calculated distribution of the magnetic field at the radius of 75-92 cm

The influence of the magnetic channel on the cyclotron magnetic field is compensated by means of iron shims on sectors.

□ 1st harmonic of the magnetic field caused by the magnetic channel is 2 compensated by means of iron shims on sectors.

Magnetic structure of DC-110 cyclotron

The amplitude of the magnetic field harmonics in the case of installation of the magnetic channel and the compensation of average magnetic field and 1st harmonic by means of iron shims.

Magnetic structure of DC-110 cyclotron

The amplitude of beam radial oscillation in the cyclotron depending on the orbit radius.

With account of the 2nd harmonic of magnetic field perturbation

RF system of DC-110 cyclotron

1. Two dees have an electrical jumper in the center of the cyclotron.

2. One RF-generator.

3. One trimmer of automatic resonance frequency tuning

Resonance frequency of resonators	7.494 - 7.806 MHz
Acceleration harmonic	2
Nominal position of shorting plate from cyclotron center	3760 mm
Dee voltage	55 kV
Calculated RF power consumption of one resonator	4.3 kW
Maximum current density on stem surface	32 A/cm
Frequency tuning range by AFC trimmer	100 kHz (0.1%)
Maximum power of RF generator	20 kW

Eleme	rt RF system	Distance from the center, mm	Power dissipation, W
Dee		0 - 1050	76
Stem		1450 - 3660	2825
Anti-dee		0-1063	68
Outer cy the cavit	lindrical part of Y	1063 - 1450	996
Shorting p	olate	3660	266
		Σ	4231

Vaccum system of DC-110 cyclotron Design and obtained vacuum in DC-110 cyclotron

	Required	Obtained
Injection channel	1 10 ⁻⁷ Torr	1,1 10 -7 Torr
Cyclotron chamber	(1-2) 10 ⁻⁷ Torr	 1,7 10 -7 Torr (in static regime) 2,7 10 -7 Torr (in working regime, with beam)
High energy ion channel	5 10-6 Torr	2 10 ⁻⁷ Torr

Vacuum pumping

1-st stage – forepump – 2-nd stage – turbomolecular pumps – 3-rd stage – cryogenic pumps –

~ 5 10⁻² Torr ~ 1 10⁻⁶ Torr ~ 1 10⁻⁷ Torr

Зависимость интенсивности пучка на R=200мм

DC-110 cyclotron Experimental results

⁴⁰Ar⁶⁺ beam capture into acceleration.

Canture coefficient of injected heam

	into acceleration					
Ι _{inj} , μΑ	Bunchers switched off	Lin - on	Sin - on	Sin+Lin - on		
6	9,3 %	23,2 %	25,8 %	48,2 %		
18,4	8,7 %	15,6 %	25,0 %	38,0 %		
49	9,1 %	15,7 %	25,7 %	36,7 %		
103	87%	14 1 %	24.8 %	34.0 %		

Коэффициент банчировки, на радиусе усорения R=200мм

Зависимость эффективности захвата пучка в ускорение от интенсивности инжектируемого пучка

Transmission of beam from ion source to film irradiation device with disconnected bunching system.

Ion	Injected beam current,	Accelerated beam current, μ A (beam bunching system switched off)		Extracted beam current, μ A	Beam current on the target uA
	μπ	R= 140 mm	R= 908 mm		tai get, µA
⁸⁴ Kr ¹³⁺	150	13	5.8	3.9	3.9
	8.7%	(8%)			
		45	5% (75%)		
			67% (60%)	
				100% (90	1%)
	2.6% (3.2%)				

Transmission of beam from ion source to film irradiation device with connected sinusoidal and linear bunchers

Ion	Injected beam current, μ A	Accelerated beam current, μ A (beam bunching system switched on)		Extracted beam current, μ A	Beam current on the
		R= 140 mm	R= 908 mm		target, μ A
⁸⁴ Kr ¹³⁺	150	44	20.7	14.5	14.5
	29	% (30%)			
		47% (75%)		
			70%	(60%)	
				100% (90	9%)
			9.7% (10 -12%)		

* Design values are indicated in parentheses

Ion beam parameters of the DC-110 cyclotron

Optimal frequency values of RF system and magnetic field during acceleration of ⁴⁰Ar⁶⁺, ⁸⁶Kr¹³⁺ and ¹³²Xe²⁰⁺ ions.

Ion	Mass to charge ratio (A/Z)	Cyclotron magnetic field, T	Acceleration harmonic	RF generator frequency, MHz	Frequency difference, ΔF,
⁴⁰ Ar ⁶⁺	6.6667	1.6612	2	7.653	23 kHz
⁸⁶ Kr ¹³⁺	6.6154	1.6612	2	7.712	-18 kHz
¹³² Xe ²⁰⁺	6.6000	1.6612	2	7.730	0 kHz

Experimental beam parameters of the DC-110 cyclotron obtained after completion of start-up works

Ion	Beam intensity from	Accelerated and extracted beam intensity, µA		Ion energy, MeV/nucleon
	ECR source, µA	design	result obtained	
⁴⁰ Ar ⁶⁺	94	6 13		2.5
⁸⁶ Kr ¹³⁺	150	13	14.5	2.5
¹³² Xe ²⁰⁺	190	10	10.9	2.5

DC-110 dedicated heavy ion cyclotron developed and created at the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research for the BETA research and industrial complex in Dubna (Russia)

Photo of membrane on the electron microscope. Pore density - 1.32 0⁸ pores/cm2. Magnification of 30,000 times Spo

December 29, 2012 first samples of track membranes were received

Spot of ¹³²Xe²⁰⁺ beam on luminophor

Facility for polymer film irradiation

Deverse			
Parameters 0			

Heavy ion accelerators	Accelerated ions	Ion energy	Beam intensity	
IC-100	(1986)	C-Ar	1.2 MeV/nucleon	0.1 pµA
FLNR JINR (cyclotron project – FLNR JINR)	(2002)	Ar Kr, Xe	1.2 MeV/nucleon	0.4 pμA 0.2 pμA
		1, W		0.05 ρμΑ
DC-60 (2006) Interdisciplinary Research Center of the Gumilev Eurasian National University (Astana, Kazakhstan) (cyclotron project – FLNR JINR)		C - Xe	0.35 – 1.7 MeV/nucleon	10 – 0.1 pμA
CYTREC(2002)ALFA research and industrial complex in Dubna (Russia)(cyclotron project – DLNP JINR)		Ar	2.4 MeV/nucleon	0.03 ρμΑ
DC-110(2012)BETA research and industrial complex in Dubna (Russia)(cyclotron project – FLNR JINR)		Ar Kr Xe	2.5 MeV/nucleon	1 ρμΑ 1 ρμΑ 0.5 ρμΑ