RADIOBIOLOGICAL RESEARCH WITH CHARGED PARTICLES BEAMS IN ITEP

Nikolay Markov <u>markov@itep.ru</u> <u>http://plasma.itep.ru/</u>

Motivation: Heavy Ion Therapy

In vivo PET Monitoring

Durante & Loeffler, Nature Rev Clin Oncol 2010

Key research areas in hadrontherapy

- 1. Moving targets
- 2. TPS: RBE modeling, reducing uncertainly
- 3. Secondary cancer risk
- 4. Individual radiosensityvity
- 5. Genetic background
- 6. Cancer stem cells
- 7. Hypofractionation

Availability of Heavy Ion Therapy is increasing worldwide - 8 centers in operation, 3 under construction. Approx. 11000 patients were treated with C-ions since 1994 (http://www.ptcog.ch)

12C-Ions

250 MeV/u

⁶⁰Co-γ

15

6

RBE₁₀ 3

2

1

0

0

0

Motivation: Radiobiology for Space Research

- 1. Galactic Cosmic Rays (GCR) high energy protons; highly charged, energetic atomic nuclei (HZE particles)
- 2. Solar Particles Events (SPE) medium and high energy protons
- 3. Trapped Radiation medium energy protons and electrons

Main objectives of space radiobiology:
Development of an effective shielding against space radiation;
Reduction of biological uncertainty;

- Estimation of the risks of the harmful radiation effects (neurodegeneration, cancer induction);

Relative Contribution of Different Components

JITEP

Heavy ions for radiobiology in ITEP

Beam parameters

Ion	$^{12}C^{6+}$	⁵⁶ Fe ²⁶⁺	
Energy	215 MeV/amu	230 MeV/amu	
Particles per pulse	10 ⁶ - 10 ⁹	$10^{6} - 10^{8}$	
Pulse width	800 ns	800 ns	

Results of beam dynamic calculation with COSY Infinity

Particles measurements

Fast current transformer FCT-082 (Bergoz)

Sensitivity	5 V/A
Rise time	500 ps
Droop	< 20 %/mks
Upper cutoff frequency -3dB	700 MHz
Lower cutoff frequency -3dB	< 32 kHz
L/R time constant (min.)	5 mks

Signal from current transformer

0.08

Numerical calculation of FCT signal

Depth-dose curve measurements

Silicon Semiconductor Detector (SSD)

Parameters of SSD used in exp.

Detector type	Hi-p-type
Thickness of Si plate	0.2 mm
Thickness of sensitive layer	15 mkm
Sensitive area	1x1 mm ²

Depth-dose curve measured with SSD

SSD dose rate linearity in entrance region

Results of SHIELD - HIT calculation

ITEP 😸

100 um

15um

Absorbed dose determination

Transversal distributions

RuPAC-2014

Radiochromic Film Dosimetry

 $PV_{unexp} - PV_{bckg}$

Radiochromic Film calibration with 12C ions beams

1. Calibration with 215 MeV/amu ions in ITEP

2. Calibration with 150 MeV/amu ions in GSI

Depth-dose curve measurements with radiochromic films

Radiobiological experiments "in vitro" with 12C ions

A	Human peripheral blood lymphocytes. For irradiation cells were placed in tubes (eppendorf 5 ml). Chromosome aberrations were analyzed in metaphases 48h after radiation exposure.
В	Breast cancer cell line Cal51 with normal karyotype. For irradiation cells were grown as monolayer and placed in 12.5 cm ² culture flasks. After irradiation chromosome aberration were analyzed
С	Chinese hamster ovary cells CHO-K1. For irradiation cells were grown as monolayer and placed in 12.5 and 25 cm ² culture flasks. After irradiation cell survival was measured with a colony assay.
D	Melanoma B16F10 cells. For irradiation cells were grown as monolayer and placed in 25 cm ² culture flasks. After irradiation cell survival was measured with a colony assay.

1. Eppendorf

2. Culture flasks

Methods of analysis

1. Analysis of chromosome aberration

Normal	Chromatid break	Chromosome fragment	Acentric ring	Centric ring with fragment	Translocation
	ľ		 6	0"	
Chromatid exchange		Dicentric with fragment		Reciprocal exchange	

2. Cell survival based on a colony assay

Results of lymphocyte irradiation

ITEP

Results of CHO-K1 and Cal51 cells irradiation

ITEP 😸

Summary of radiobiological experiments "in vitro"

	Cell type	Depth in water eq., mm	LET, kev/mkm	Dose range, Gy	RBE (x-ray)	RBE (60Co)
1	Lymphocyte	0	16	0 - 8	1.53 ± 0.11	1.77 <u>+</u> 0.13
2	Ca151	0	16	0 - 4	-	2.02 ± 0.11
	Calsi	82	40	0 - 4	-	3.63 ± 0.16
2	D16E10	23	20	0 - 10	-	1.45 ± 0.12
3	BIOFIU	85	44	0 - 8	-	2.46 ± 0.15
4	CHO-K1	0	16	0 - 8	1.65 <u>+</u> 0.11	-
		82	40	0 - 5	2.27 ± 0.13	-

Radiobiological experiments "in vivo"

Further radiobiological research in ITEP

Proton linear accelerator I-2

Max. Energy, MeV	22.5
Pulse width, mks	2 - 30
Max. field size, mm	85
Particles per pulse, protons/cm ²	107 - 1011
Range in water, mm	~ 5
Min. LET, keV/mkm	2.4

- 1. RBE of low energy protons
- 2. Bystander effect
- 3. Micro-beams (single cell single particle)

