

STATUS OF INJECTION COMPLEX VEPP-5

A.Starostenko BINP, Novosibirsk

Outline

General Description and layout

- Design of Linacs
- Electron gun
- Acceleration structures
- Results of linac's commissioning
- Design of Damping Ring
- □ Results of damping ring commissioning
- Injection angle measurement
- Closed orbit correction
- Lattice correction

Summary

General Description and layout

Klystron Gallery

Transfer line to VEPP-4M

Transfer line to VEPP-2000

Design of Linacs base parts

200kV Electron gun

13 mm oxide cathode

Disk-loaded travelling wave accelerating structure Cooling Jacket Joint Coupler Accelerating structure

Operational frequency	2855.5 MHz
Internal cell diameter 2 <i>b</i>	83.75 mm
Iris diameter 2 <i>a</i>	25.9 mm
Iris thickness t	6 mm
Period D	34.99 mm
Operational mode of oscillation θ	$2\pi/3$
Relative phase velocity β_p	1
Relative group velocity β_g	0.021
Section length L	2.93 m
Total number of cells (incl. 2 WTT)	85
Unloaded quality factor Q_0	13200
Shunt impedance R_{sh}	51 MOhm/m
Time constant $\tau_{0a}=2Q_0/\omega_0$	1.471 μs
Attenuation (by field) $\alpha = l/(\tau_{0a}v_{gr})$	0.108 m ⁻¹
Filling time $T_t = L/v_{gr}$	0.465 µs

Accelerating cell

Results of linacs commissioning

•Number of e- on conversion target - 1.5.10¹⁰ /pulse

•Energy of e- on conversion target – 275MeV

•Energy of e+ at the end of linac - 420 MeV

•Number of e+ at the end of linac - 6. 10⁸ /pulse

Position conversion coefficient - 0.14 / GeV

Electron beam on phosphor screen after the tenth acceleration section

N=-5.02e+10 [112.72,117.38]N=-3.80e+10

Energy spectrum and number of electrons on spectrometer after second acceleration section

Design of Damping ring

Beam energy	510 MeV
Perimeter	2740 cm
RF Frequency	700 MHz
Damping time	18 msec
Horizontal emittance	2.3·10 ^{−6} rad·cm
Vertical emittance	0.5·10 ^{−6} rad·cm

Results of damping ring commissioning

Damping ring and positrons		
Maximum current e+	70mA (4· 10 ¹⁰)	
Storage rate	2.5· 10 8/c	
Injection rate	12.5 Hz	
Energy of e+	420 MeV	
Damping ring and electrons		
Maximum current e-	160mA (9· 10 ¹⁰)	
Energy of e-	360 MeV	
Storage rate	1.8· 10 °/c	

Closed orbit correction

Closed orbit correction was done with respect to the quadrupole magnetic centers. To do

so closed orbit responses to the gradient variations of the individual quadrupoles.

Lattice correction

Uncorrected beta functions in VEPP 5 Damping ring

First betatron tunes were set to the project values. After that software "sixdsimulation" developed for VEPP-2000, was applied to correct linear lattice. It took 4 iterations to correct linear lattice by fitting the model to the experimental data composed of closed orbit responses to the all dipole correctors, dispersion, and betatron tunes. After last iteration the fitted model didn't show significant variation from the ideal configuration.

Project beta functions in VEPP 5 Damping ring

Corrected beta functions in VEPP 5 Damping ring (after four

Summary

The VEPP-5 Injection Complex should be running with project parameters in the near future. Damping ring of the Complex stores the electron beams of 350 MeV today. Storage rate is 3•10⁹ electrons per pulse and maximum store current is 160 mA, which exceeds design parameters. Beam transfer line to the BINP colliders is completely assembled and ready for beam accepting. The Damping ring optics were tuned to improve the Complex stability.

