COMMISSIONING 2 MEV COOLER IN COSY AND NOVOSIBIRSK

V. B. Reva ${ }^{[1,2]}$, M.I. Bryzgunov ${ }^{[1]}$, A.V. Bubley ${ }^{[1]}$, A.D. Goncharov ${ }^{[1]}$, V.M. Panasyuk ${ }^{[1]}$, V.V. Parkhomchuk ${ }^{[1,2]}$ BINP ${ }^{[1]}$, Novosibirsk, Russia, NSU ${ }^{[2]}$, Novosibirsk Vsevolod Kamerdzhiev, FZJ, Jülich, Juergen Dietrich, HIM, Mainz

6-10 октября 2014 года, Обнинск, Россия

ОРГАНИЗАТОРЫ:

- Российская акалемия наук
- Научный совет РАН по проблемам ускорителей заряженных частии
- Госкорпорация «Росатом»
- ФГУП «ГНЦ РФ-ФЭИ им. А. И. лейпунского»

ПРИ ПОДАЕРЖКЕ:

- Российского фонда

фундаментальных исследований

- Министерства образования

и науки Российской Федерации

Main feature of cooler COSY

1. Classical design with longitudinal magnetic field; -very wide range of the operation, the preferable smallest energy is 25 keV , it is injection energy; 2. Section-module principle of the design of the electrostatic accelerator ; -each section contains the high-voltage module and coils of the magnetic field;
2. Possibility for on-line control of the quality of the magnetic field

- in order to have high cooling rate;

4. Cascade transformer for power supply of the magnetic coils;

- smooth longitudinal magnetic field along accelerated tube demands power to many coils;

5. Electron Collector with Wien Filter
-in order to have small leakage current from the collector
6. "Magnetized" electron motion
7. "4-sectors" electron gun for diagnostics of the electron beam motion

2 MeV Electron Cooler	Parameter
Energy Range	$0.025 \ldots 2 \mathrm{MeV}$
Maximum Electron Current	$1-3 \mathrm{~A}$
Cathode Diameter	30 mm
Cooling section length	2.69 m
Toroid Radius	1.00 m
Magnetic field in the cooling section	$0.5 \ldots 2 \mathrm{kG}$
Vacuum at Cooler	$10^{-9} \ldots 10^{-10} \mathrm{mbar}$
Available Overall Length	6.39 m

3D design of COSY Cooler

3D design of
 Accelerating Column

Each section contains;

- high-voltage power supply +/- 30 kV ;
- power supply of the coils of the magnetic field (2.5 A, 500 G);
- section of the cascade transformer for powering of all electronic components;

33 high-voltage section

Now in operation in COSY FZJ

Possibility for on-line control of the auality of the magnetic field

Compass with gimbal suspension

Horizontal magnetic field in the cooling solenoid initially (curve 1) and after few iteration of coil adjustment (curve 2).
R.M.S. ripple of the magnetic force line was decreased from $6 \cdot 10^{-4}$ to $2 \cdot 10^{-5}$.

According Parkhomchuk's equation the cooling force strongly depends from the quality of the magnetic field in the cooling section

measurement system

Cascade Transformer as

"Transformers section looks like accelerating tube" Power Supply

-transformers connected to series; -tube is alternation of the ceramic and metal rings (sections);

- tube is filled by oil;
- section has special spark-gaps;

physics principle of operation of cascade transformer is combination of series and parallel resonances induced by the leakage inductance and compensative capacitances
- transfer constant on load resistor 20 Ohm is 0.9, the r.m.s. voltage 700 V corresponds to 25 $k W$ of power

Distribution Power Along Accelerated Column

Voltage AUX

Wien Filter - try to catch electrons that run away from collector

Area with crossed electrical and magnetic fields compensated each other

$$
\vec{F}_{\perp}^{\prime}=\overrightarrow{c^{\lfloor }} \quad \pm
$$

primary beam
$\vec{F}_{\perp}={ }^{\overrightarrow{2}}+{ }_{c}{ }^{\overrightarrow{ }}$
secondary beam

The experimental recuperation coefficient is $10^{-5}-10^{-6}$

Исследование эффективности рекуперации при различных энергиях

200 кВ

-4 Δ Leak1
-•• Leak2
1 MB

The particle motion at a presence of a large magnetic field can be described as combination of the fast larmour oscillation and slow drift motion. In spite of the fact that, the adiabatic criteria isn't satisfied the drift description of particle motion is correct. The reason is smallness of the transverse component of the magnetic field in comparison with the longitudinal component.

S

S

Fast modes, galloping of the shape of the electron beam

Modification of the beam shape and position

Transportation of the electron beam is also magnetized that has some features. The necessity to have the continuous magnetic field from gun to the collector is result of the operate range from 100 keV to 2 MeV .

Bends

To decrease heating of the beam after transition through a bend, the length of the bend should be equal to integer number of Larmor length. In such a case kick on entry to bend in compensated by kick on leaving.

Trajectory of electron with energy 2 MeV in bend. Bend starts is $\mathrm{s}=200 \mathrm{~cm}$, radius $\mathrm{R}=100 \mathrm{~cm}$

The worst situation, which one should avoid, occurs when length of bend is equal to $n+1 / 2$ of Larmor length. In such a case two kicks are added and resulting transverse velocity of electrons is very big from the point of view of cooling.

To adjust the optics for every energy is inconvenient. Another method was proposed for this system. The idea of the method is to change magnetic field in the cooler synchronously with beam energy. If magnetic sys was adjusted for 2 MeV electron beam then after the decreasing of energy for value U, we must decrease magnetic field (longitudinal and transverse) in α times where α is equal to ratio of momentums for 2 MeV and for U :

Matching section, non-adiabatic transition between the different value of the magnetic field

$$
B(z)=\frac{\gamma \beta c^{2}}{e} k_{N}(z)=\frac{2 \gamma \beta c^{2}}{e} \sqrt{\frac{1}{W^{4}}-\frac{V^{\prime}}{W}}
$$

Two place for optic compensation
The special section with independent power supplies for forming proper profile the magnetic field

Diagnostics of the shape of the electron beam

Photo Pick-Up System

Voltage is applied to one sector

4 sector electron gun
Pick-Up 2

Center $=1+2+3+4$
Pick-Up 1

The combination of the constant and modulation voltage is applied to the electrodes

Lengthy coils in longitudinal direction the control the position of the center of Larmour rotation; Short coils control the amplitude of the Larmour oscillations

Optic features of COSY cooler

line17hor, line17ver, all bendscorrectors of the beam shift
line 10- correctors of the beam kick
Match and torbnd- correctors of the galloping of beam shape correction
cool - convergence of ion and electron beams

Location of BPMs and magnetic elements of COSY coolers

BPM 2
BPM 3
BPM 4

Cooling section

Demonstration of the BPM and correctors working. Scanning bend 1 and bend 2 magnets

The simple verification of the diagnostic tools at electron energy 30 keV

At small value of the magnetic field the size of the electron beam is determined not only by the magnetic field but the anode value
also

$$
r_{B P M}^{2} / B_{g u n}=
$$

Change shape of the electron beam by the potential of the control electrode

$\mathrm{Ugr} / \mathrm{Uan}=-0.2 / 1.4 \mathrm{kV}$

-0.4/1.4 kV
$-0.6 / 1.4 \mathrm{kV}$
Pictures was done with wire probe

Diagnostics of optic elements

Compensation of Dipole Motion

Effect of the short dipole Short Electron Dipole Corrector
 corrector is combination of the shift of the center of electron beam with excitation of Larmour rotation

Transverse cooling at 109 kV

Longitudinal cooling at 109 kV

Before cooling

Cooling

RF cooling with formation of very narrow ion beam

Cooling at 908 kV

Combine action of stochastic and electron cooling

Only stochastic Stochastic+e-cooling
Electron energy
Proton energy
Stochastic cooling
E-cool time
Stochastic cooling time
Beta function x / y

initial no longitudinal cool, after e-cooling

908 keV
1.66 Gev
vertical and horizontal
120 s
400 s
$4 \mathrm{~m} / 3 \mathrm{~m}$

edip kick=+1/0 A
Electron energy 315.85 keV Jsol=225A=1275 G cycle duration $=600 \mathrm{sec}$ $\mathrm{Je}=0.26 \mathrm{~mA}$

$$
\begin{aligned}
& \lambda:=\frac{\gamma \cdot 3 \cdot \mathrm{~J} \cdot 511 \cdot 10^{6}}{\mathrm{~B} \cdot 300} \quad \lambda=1.697 \\
& \Delta:=0.02 \quad \frac{\Delta}{\lambda}=\mathrm{J} .012
\end{aligned}
$$

Incline of the electron beam is essential too

Electron energy 315.85 keV
Jsol=225A=1275 G
cycle duration $=600 \mathrm{sec}$
$\frac{0.04}{125}=3.2 \times 10^{-1}$ $\mathrm{Je}=0.3 \mathrm{~mA}$

Summary

- The key problems of the electron cooler 2 MeV (modular approach of the accelerator column, the cascade transformer, the compass base probe located in the vacuum chamber, the design of the electron gun with 4 -sectors control electrode) are experimentally verified during commissioning in Novosibirsk and Juelich.
- The strong surprises aren't observed.
- The cooling experiments in COSY were started.
- The conception of magnetized cooling is useful until now

