STATUS of DC280 CYCLOTRON PROJECT

Gulbekian G.G. and DC280 group

RUPAC 2014

FLNR's BASIC DIRECTIONS of RESEARCH according to the Seven-Year Plan 2010 - 2016

- 1. Heavy and superheavy nuclei:
- synthesis and study of properties of superheavy elements;
 chemistry of new elements;
- Fusion-fission and multi-nucleon transfer reactions;
- > nuclear- , mass-, & laser-spectrometry of SH nuclei.
- 2. Light exotic nuclei:
- > properties and structure of light exotic nuclei;
- reactions with exotic nuclei.
- 3. Radiation effects and physical groundwork of nanotechnology.

Superheavy Element Research

TOTAL OPERATION TIME OF U-400 AND U-400M ACCELERATORS

Operation time of U-400 and U-400M accelerators in 2010-2014

Hours

NEW FLNR ACCELERATOR – CYCLOTRON DC280

In order to improve efficiency of the experiments for the next years it is necessary to obtain the accelerated ion beams with following parameters.

Energy	4÷8 MeV/n
Masses	10÷238
Intensity (up to A=50)	>10 pµA
Beam emittance less 30π mm·mrad	
Efficiency of beam transfer >50%	

DC280-cyclotron – stand-alone SHE-factory

- Synthesis and study of properties of superheavy elements.
- Search for new reactions for SHEsynthesis.
- > Chemistry of new elements.

DC280 (expected) E=4 8 MeV/A			
Ion	Ion energy [MeV/A]	Output intensity	
⁷ Li	4	1 10 ¹⁴	
¹⁸ O	8	1 10 ¹⁴	
⁴⁰ Ar	5	6 10 ¹³	
⁴⁸ Ca	5	0,6-1,2 10 ¹⁴	
⁵⁴ Cr	5	2 10 ¹³	
⁵⁸ Fe	5	1 10 ¹³	
¹²⁴ Sn	5	2 10 ¹²	
¹³⁶ Xe	5	1 10 ¹⁴	
²³⁸ U	7	5 10 ¹⁰	

DC280. Parameters and Goals

	DC280 Parameter	Goals
1.	High injecting beam energy (up to 100 kV)	Shift of space charge limits for factor 30
2.	High gap in the center	Space for long spiral inflector
3.	Low magnetic field	Large starting radius. High turns separation. Low deflector voltage
4.	High acceleration rate	High turns separation.
5.	Flat-top system	High capture. Single orbit extraction. Beam quality.

Иваненко И.А.

Калагин Н В

<u>DC280</u>

Working Diagram of the DC280 Cyclotron

DC280 Cyclotron

DC280 Main Parameters

Ion source	DECRIS-4 - 14 GHz DECRIS-SC3 - 18 GHz
Injecting beam potential	Up to 100 kV
A/Z range	4 7
Energy	4÷8 MeV/n
Magnetic field level	0.6 1.35 T
K factor	280
Gap between plugs	400 mm
Valley/hill gap	500/208 mm/mm
Magnet weight	1000 t
Magnet power	300 kW
Dee voltage	2x130 kV
RF power consumption	2x30 kW
Flat-top dee voltage	2x14 kV

PM ECR

Вес (магниты): 650 + 30 кГ

	DECRIS-3	PM ECR
B _{inj}	12,5	13,5
B _{min}	3,95	3,93
B _{extr}	10,1	11,1
B _{rad}	9,5	11,0
D _{pl.chamb}	64	70
L _{mirr}	200	250

U400M ACCELERATOR COMPLEX DECRIS-SC2 (18 GHz)

DC280. High voltage platform and axial injection system model

DC280 axial injection beam line

Horizontal (upper curve), vertical (lower curve) Ar⁷⁺ beam envelopes Longitudinal magnetic field – green line, apertures – red line

DC280 axial injection beam line

DC-280 POLYHARMONIC BUNCHER

Particle distribution in the median plane of DC-280

Pressure distribution along axial injection beam line

Тихомиров А.В.

DC280 central region with Flat-Top system

The central region of DC280 cyclotron. Positions of the main (Dee1 – Dee2) and independent «flat-top» (FT1 – FT2) RF systems.

Quadrupole lense at DC280 central region

Quadrulole leanse:

- + Decrease aperture losses
- + Increase beam efficiency at first orbits
- + Permit to adjust the acceleration mode operatively
- Increase beam radial occilation
- Complicate central region construction

combined main and

independent

without

Acceleration voltage along the central ion trajectory at 1-t orbit and RF phases of main 3h and «flat-top» 9h dees voltage in the considered cases of «flat-top» system configuration

Beam transverse form for 5 initial orbits in the considered cases of «flat-top» system configuration

<u>3D calculation of DC280</u> cyclotron magnetic field

Calculated average magnetic fields

Model of DC280 cyclotron magnet system

Contributions of the radial coils

The main magnet of DC280

DC280. Dees and ground plating

DC280. RF resonator

As an example - RF system

- Bimetallic resonators copper plated stainless steel
- Copper balls used as contacts on shorting plate

DC280 plan view and beam extraction structure

DC280.Structure of flat-top dee with resonator

Flat-Top dee voltage radial distribution

Карамышев О.В.

DC280 Flat Top system

RF phase – energy position of ions along acceleration

Radius – energy position of ions at the deflector entrance

Flat-Top is turned on

Flat-Top is turned off

DC280. Plan view of the extracted beam lines

Switching magnet

New Experimental Building with DC280 accelerator complex

Гульбекян Г.Г., Костырев В.А., Башевой В.В.

Experimental Hall of the SHE-Factory 22.09.2014

on-line: http://inflnr.jinr.ru/dc280.html
FLNR - 2017(18)

SHE factory

DC280 equipment completion (k\$).

Nº	years	2011	2012	2013	2014	2015	2016	Σ
1.	Main magnet DC-280	125	2 2 5 0	2 690	2 350	200		7 615
2.	Main coil			344	335	150	50	880
3.	Trim coils				115	130	70	298
4.	Cyclotron vacuum chamber			121	121	400	120	763
5.	Acceleration RF structure			202	521	350	70	1143
6.	R.F. power supplies			124	364	50	30	568
7.	Polyharmonic buncher		23	19		50	20	113
8.	Permanent magnet ECR ion source			184	83	200	60	527
9.	High voltage platform			99	53	550	90	793
10.	Beam transport channels		254	330	236	150	30	1001
11.	Two plane correction magnets			161				161

Nº	years	2011	2012	2013	2014	2015	2016	Σ
12.	Bending magnet with vacuum chamber			141	141	50		333
13.	Beam diagnostics			258	61	150	25	495
14.	Power supply transformers			249	228			478
15.	Power supplies of magnets			465	316	130		911
16.	Water cooling			365	342	150	20	878
17.	R.F. control system					550	50	600
18.	Simulation, drawing	30	15	17				64
19.	Dees, gound plates				96	190	32	319
20.	Beam injection system					450	20	470
21.	Vacuum system					850	60	910
22.	Control system					950	60	1010
23.	Transport					150		150
		← 14350 → 68 %			$\begin{array}{c} \leftarrow 6700 \longrightarrow \\ 32\% \end{array}$		∑∑ 21050	

Thank you!

Super Heavy Element Factory

To enhance the efficiency of experiments for next few years it is necessary to obtain accelerated ion beams with the following parameters:

- •
- Ion energy MeV/n
- Ion masses
- Beam intensity (up to A=50)
- Beam emittance mm×mrad

4÷8

10÷238 10 рµА

less 30 π

Входная и выходная фазы пучка для 2-х синусных банчеров

Временное распределение плотности частиц в медианной плоскости

Калагин И.В.

DC-280 Cyclotron

FLNR - 2015

Magnetic structure of DECRIS-PM

DC280. Swiching magnet TM 50

Flerovlab Building 131

DC280 Plan Lay-out

SCHEDULE OF THE SHE FACTORY CREATION

	2011	2012	2013	2014	2015	2016
Experimental Building						
Cyclotron DC 280						
		•				
Main magnet yoke						
areation						
creation						
Equipment creation,						
completion.						
Assembling, testing						
First experiment						

Flat-Тор дуанты

Карамышев О.В.

Эффективность ДЦ280

Казаринов Н.Ю.

Beam transport along channel №4

Казача В.И.

DC280

Main Parameters

Ion source	DECRIS-4 - 14 GHz DECRIS-SC3 - 18 GHz		
Injecting beam potential	Up to 100 kV		
A/Z range	4 7		
Energy	4÷8 MeV/n		
Magnetic field level	0.6 1.35 T		
K factor	280		
Gap between plugs	400 mm		
Valley/hill gap	500/208 mm/mm		
Magnet weight	1000 t		
Magnet power	300 kW		
Dee voltage	2x130 kV		
RF power consumption	2x30 kW		
Flat-top dee voltage	2x14 kV		

DC280 cyclotron central region

The view of DC280 cyclotron central region with inflector and quadrupole lens

Radial and vertical emittances at the inflector exit

DC280. High voltage platform and axial injection system scheme

DC280. Emittances of the extracted beam

Борисов О.Н.

DC280. 90^o electrostatic axial injection bender model

POWER SUPPLIES OF MAGNETIC ELEMENTS

DC280 «FLAT-TOP» RF SYSTEM

The beam energy spread at the 5-th orbit without «flat-top» RF system

The beam energy spread at the 5-th orbit with «flat-top» RF system

TOTAL OPERATION TIME OF U-400 AND U-400M ACCELERATORS

Operation time of U-400 and U-400M accelerators in 2009-2013

EXPERIMENTAL PROGRAM for mass measurement of SHE

• 112 and 114 elements have high volatility

DC280 axial injection beam line

Horizontal (upper curve), vertical (lower curve) Ar⁷⁺ beam envelopes Longitudinal magnetic field – green line, apertures – red line

Рис. 3. Предполагаемая зависимость эффективности синусного банчера от βλ инжектируемого пучка тяжелых ионов в циклотроны ЛЯР при оптимальном расположении банчера

🛦 -экспериментальные данные

∆- ожидаемые точки

Гульбекян Г.Г.

Рабочая диаграмма режимов ускорения ионов на циклотроне ДЦ-280 (на 3-й гармонике ВЧ)

Тихомиров А.В.

Синтез структуры «Flat-Top» резонатора

Рис. 5 Эскиз финальной геометрии « Flat-Top» резонатора

DC280 . Intensity of some typical ion beams

20Ne	1·10¹⁴ pps
48Ca	6·10¹³ pps
50Ti	3⋅10 ¹³ pps
70Zn	2,5·10 ¹³ pps
86Kr	3·10¹³ pps
100Mo	2·10¹² pps
124Sn	2·10 ¹² pps
136Xe	2·10¹³ pps
208Pb	1⋅10 ¹² pps
238U	1·10 ¹¹ pps

Dee and ground plating

Хабаров М.В.

DC280 cyclotron central region

The view of DC280 cyclotron central region with inflector and quadrupole lens

Radial and vertical emittances at the inflector exit

FLNR - 2016(17)

Model of ion beam extraction from ECR

Beam envelopes

Казаринов Н.Ю.

FLNR - 2017(18)

2. Ускорение с дополнительными Flat – Тор дуантами, размещенными на 45° после основных дуантов

DECRIS-SC2

DECRIS-SC2 is the compact version of the "liquid He free" superconducting ion source. The axial magnetic field is created by superconducting coils and iron plugs. The radial magnetic field is formed by permanent magnet hexapole.

U400 Cyclotron Buncher System

Efficiency of Buncher System (I inj / I acc) for 1 µA - 70% for 100 µA - 20%

Future plans: to test the source with 18 GHz frequency

Superconducting 18 GHz ion source DECRIS-SC2 at the U400M cyclotron

DC280 Cyclotron

