Status of the Nuclotron

A.Sidorin on behalf of Accelerator Division VBLHEP JINR

RuPAC XXIV, Obninsk, October 2014

Contents

- Statistics of the operation in 2012 2014
- Increase of the beam energy
- Operation with two plateaus
- Test of new laser
- First operation of KRION-6T at Nuclotron
- Status of slow extraction
- Machine development
- R&D for NICA

Statistics of operation

Run #46 11-12.2012 (793 h 67% beam time) Test of NICA control system based on TANGO

Run #47 02-03.2013 (860 h 70% beam time) Acceleration and slow extraction d 4.5 GeV/u (~ 1.8 T) Stochastic cooling of d beam shortest beam spill 60ms at high intensity

Run #48 11-12.2013 (1050 h 73% beam time)

Carbon ions were accelerated and extracted at energy 5.8 GeV/u, 1*10⁹ Stochastic cooling of C coasting and bunched beams Beam spill 20 s

Run #49 02-03.2014 (650 h 66% beam time)

Double user mode (first run at Nuclotron).

Run #50 05-06.2014 (650 h 31% beam time, source and LU20 ~ 43%) First operation of stand ESIS Experiments "⁴⁰Ar" 1.2 GeV/u, "⁷Li" 3 Gev/u

Cooling ~ 120 h, preparation of all systems ~ 50 – 100 h

About 25% of the beam time – Machine development:

- test of new equipment (power supply, diagnostics, control system ...)
- optimization of beam dynamics (two plateaus, energy increase ...)
- R&D for NICA elements and regimes (stochastic cooling, long plateau ...)

Average time loss < 5%

Increase of the beam energy

Run #42 (December 2010) – stable and safe operation of the magnetic system at 2 T

Run #44 (December 2011) – Carbon acceleration up to 3.42 GeV/u deuterons: at acceleration up to 4 GeV/u (1.5 T) – problem with Lambertson magnet

Run #45 (March 2012) the problem was fixed, demonstration of possibility of the beam acceleration and extraction at 4.5 GeV/u (1.8 T).

Increase of the beam energy

Run #46 (December 2012) – new control system for quench detectors intensive test of all systems at fields up to 2 T Malfunction of powerful current lead.

Run #47 (March 2013) stable acceleration and extraction at 4.8 GeV/u, at 5 GeV/u – discharge of insulator in ESS Efficiency of the beam extraction without ESS is below 20%

Run #48 (December 2013) beam acceleration and extraction at 2 T

Run #48, carbon beam, 2 T

Stable operation of cryogenic complex, Better cooling and upgrade of critical elements, New quench detection system

Operation with two plateaus

Run #39 (June 2009) - new field control system: operation with two (n) plateaus

The goal of development is to have coasting beam at both plateaus

Coasting beam at two plateaus, Run #46

Adiabatic debunching and recapture at efficiency of about 95% was demonstrated

Technical limit of the first plateau duration was 0.5 s

Coasting beam at two plateaus, Run #48

Preparation of Operation for two parallel users

Coasting beam at two plateaus, Run #48

Preparation of Operation for two parallel users

RF is frozen at the first plateau

More accurate optimization of the beam dynamics is necessary Operation at higher field ramp – to improve duti factor

Run #48, December 2013

Old LIS chamber

New Laser at LU-20

The source and LU20 were optimized for C⁺⁵ acceleration

Current up to 3 mA Pulse duration ~ 4 μ s

Accelerated beam intensity up to 2*10⁹

Krion-6T Electron String Ion Source – stand prototype for Krion-N(ica) ion source.

Krion-6T project main parameters: magnetic filed up to 6.0 T, electron energy up to 15 keV. Expected ion beam parameters:

1 3 x 10⁹ ppp Au³¹⁺ (or, alternatively Au⁵¹⁺);

Ion beam extraction time from ESIS: 8 – 30 μs.

RMS emittance: 0.6 π mm mrad (extraction time 8 µs); 0.15 π mm mrad (30 µs).

⁴⁰Ar⁺¹⁶ ions acceleration (1.2 Gev/u) RUN #50

Slow extraction development

Run #47: Minimum spill duration ~ 60 ms *Discharge of ESS insulator during extraction at 5 GeV/u*

Run #48:

- Successive test of new power supply for slow extraction quadrupoles
- Demonstration of effective extraction at spill up to 20 s

Run #49 – 50:

- Routine operation of new power supply for slow extraction lenses

-Good beam spill at low intensity

General problem:

ESS performance – maximum achieved voltage is 110 kV (required at maximum energy – 200 kV) Good quality at energy \leq 3 GeV/u

Installation of new ESS is mandatory

⁷Li⁺³ beam acceleration (3 Gev/u) RUN #50

Machine development

- -Beam diagnostics (Q-meter, beam loss monitor,)
- -Power supply (current misbalance sources, slow extraction supply)
- -Quench detection system
- -Intensive test of equipment at large fields

Client application for Tango

Q - meter

Beam loss monitor system

Particle losses during acceleration and extraction (run #46)

Детектор нейтронов **БДКН-96**

Now – 4 detectors

Control system for quench detectors

Run #47: test version of the quench detector control system

Control system for quench detectors

25

-Control system based on TANGO

-Stochastic cooling

Stochastic cooling, run #47

Longitudinal cooling, filter method, coasting D-beam, P = 20 W

- E[htriment duration: 480 s
- dp/p (1e-3): 1.65 -> 0.56
- т0 ~365c

Stochastic cooling of the carbon beam 2.5 GeV/u

RF voltage of 2 kV at plateau duration up to 25 sec, bunching factor (peak/mean current) ~ 5 (for NICA ~ 15)

New control system

In June 2012 NICA machine advisory committee recommended to test **TANGO** as a NICA control system

•Modern object oriented distributed control system based on CORBA. Developed as a collaborative effort between the Alba, Desy, Elettra, ESRF, FRM II, MAX-lab and Soleil.

- Experimental fragment was tested In 2012. Now:
- injection control;
- control of the inflector plates;
- diagnostics and controle of slow extraction

Status of the Nuclotron

Parameter	Project	Status (June 2014)
Max. magn. field, T	2	2 (1.8 T routine)
B-field ramp, T/s	1	0.8
Accelerated particles	p-U, d↑	p-Xe,
Max. energy, GeV/u	12 (p), 5.8 (d) 4.5(¹⁹⁷ Au ⁷⁹⁺)	5.8 (d, ¹² C), 1.5 (¹²⁴ Xe ⁴²⁺ , ⁴⁰ Ar ¹⁶⁺) Slow extraction sys upgrade is needed
Intensity, ions/cycle	1E11(p,d), 2E9 (A > 100)	d 5*10 ¹⁰ (2*10 ¹⁰ routine), ${}^{124}Xe^{24+}$ 1*10 ⁴ ${}^{12}C$ 2*10 ⁹ ${}^{40}Ar^{18+}$ 2*10 ⁵ ${}^{7}Li^{3+}$ 3*10 ⁹

Thank you for attention

