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Abstract 
The paper presents recurrent integral-differential beam 

evolution model. This model is convenient for 
mathematical description of specific dynamic processes 
with due account of particle interaction and electric fields 
excitation by moving beam. On the basis of this model the 
problem of beam dynamics optimization is formalized as 
trajectory ensemble control problem. Analytical 
expression for quality functional gradient is obtained. 
Theoretical results are applied for solving problem of 
beam dynamics optimization in klystron-type buncher. 

RECURRENT INTEGRAL-
DIFFERENTIAL BEAM EVOLUTION 

MODEL 
Let us consider beam dynamics description by recurrent 

system of integral-differential equations. Finite iteration 
process is introduced. At every iteration beam evolution is 
described by the equations of the following form: 
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Here [ ]T,0∈τ  is independent variable; T  is fixed; k  

is iteration number ( )Kk ≤≤1 ; )(kx  (or )(ky ) is n -

vector of phase coordinates; )(τu  is r -vector of control; 

( ))(,,, )1()(
1 uHuxf −kkτ  and ( ))()(

2 ,, kk yxf τ  are n -vector 

functions; )()1( uH −k  is the matrix containing the values 

)()1( u−k
jsH , Ss ,1= , 21, JJj =  of functionals defined on 

beam trajectories at previous iteration; ( ))()( , kk xτρ  is 
phase density corresponding to dynamic system (1); 
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The components of every matrix )(lH , Kl ,1=  are the 
values of functionals 
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average phase vector at l -th iteration. Note that 0H =)0( . 
The resulting beam evolution is to be achieved at the 

last iteration number K . 
Beam evolution model suggested is based on 

formalization and generalization of iterative method of 
beam dynamics simulation in floating-drift klystron with 
due account of Coulomb repulsion and RF fields 
excitation in resonators. According to this method excited 
fields are represented via induced current Fourier 
decomposition [1]. Vector-function ( ))(,,, )1()(

1 uHuxf −kkτ  
is determined by the method of RF fields description. 
Functional values (4) represent induced current Fourier 
harmonics in resonators (excluding modulator) and are 
used to express excited fields at next ( )1+l -th iteration 
and thus to determine vector-function 
( ))(,,, )()1(

1 uHuxf ll+τ  in dynamics equation (1). Vector 

function ( )yxf ,,2 τ  is defined by particle interaction 
accounting (in view of space-charge forces representation 
given in [2]). 

It should be noted that model (1)-(4) may be convenient 
for wide class of beam evolution iterative descriptions 
with due account of beam dynamics dependence on the 
functionals defined on beam trajectories at previous 
iteration. These functionals approximate the fields 
generated by moving beam itself.  

Beam evolution modeling with due account of the 
fields mentioned (in particular, Coulomb forces) may be 
performed in different ways [2-14]. Analytical 
representation of these fields allows to formalize beam 
dynamics optimization problem and to obtain quality 
criterion gradient analytical expression [2,11,12]. 

OPTIMIZATION PROBLEM 
Let us introduce quality criterion of the dynamic 

process (1)-(4) as a function of functionals defined on 
beam trajectories at finite iteration: 
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Ni ,1= . Here ( )NF ΓΓ K,1 , ( )ii Aux ,,,τΦ , Ni ,1=  are 

smooth functions; )(uA i , Ni ,1=  are M -vectors of 
values of integral functionals 
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Ni ,1= , Mm ,1= , with smooth integrands. The 
expressions (7) may be interpreted as particle 
characteristics averaged over the device spatial cross-
sections (when τ  is the time or its analogue). 

So beam dynamics optimization problem is reduced to 
hill-climbing problem with objective functional (5)-(6). 
This problem is investigated on the basis of mathematical 
methods suggested by D.A. Ovsyannikov and widely 
used for treatment different beam dynamics optimization 
problems [2,3,7,11,12]. Analytical expression of criterion 
functional (5)-(6) variation is derived in terms of auxiliary 
functions satisfying the special equations on dynamic 
system trajectories. This expression allows to obtain 
objective functional gradient and to apply directed 
optimization methods. The results obtained may be used 
for beam dynamics optimization in different structures. 

BEAM DYNAMICS IN BUNCHER: 
MODELING AND OPTIMIZATION  

Model (1)-(4) is used for beam evolution description in 
klystron buncher. In this case independent variable is 

ct=τ , where c  is the velocity of light, t  is the time; 
[ ]T,0  is independent variable segment sufficiently large 
for any particle to pass the structure; 2=n ; 

=)(kx ),( )(
2

)(
1

kk xx ),( )()( kk pz= , where z  is longitudinal 
coordinate, p  is reduced impulse of electron. RF fields in 
resonators (except modulator) are simulated on the basis 
of induced current first harmonics [1, 11];  
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Here J  is total number of resonators; e  is absolute value 
of electron charge; 0m  is electron rest-mass; λ  is RF 
field wavelength; 1U  and 1Φ  are prescribed amplitude 
and initial phase of RF field voltage in first resonator 
(modulator); j  is resonator number; jρ  and jQ  are 
wave resistance and Q -factor; jd  is electrical gap 
length; jξ  is resonator center coordinate; smooth bell-

shaped function ( )ηjE~  presents electric field intensity 
distribution along the gap axis; jθ  is the mismatch angle; 

( )02 ffQarctg jjj Δ=θ ; 0ff jΔ  is resonator mismatch 
with respect to basic frequency λcf =0 ; ),( hξεΠ  is 
smooth approximation of the step function 

( ) ( )ξξξ −+=Π hUhUh),( , where )(ηU  is Heaviside 
function; u  is the vector of control parameters: 

( )exJJ ffff ξξξ ,,,,,, 2002 KK ΔΔ=u , where exξ  is 
device exit coordinate; I  is average beam current. 

Electron beam is considered to have constant radius R  
and to move inside the conducting channel of radius a . 
Model particles are supposed to be disks-clouds 
(cylinders) with radius R  and thickness Δ2 . To describe 
Coulomb forces we use the analytical expression for 
electric field intensity [6]. Thus, 
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where 0ε  is electric constant; )(ηlJ  is Bessel function of 

the l -th order; K,2,1, =mmμ  are the roots of Bessel 

function )(0 ηJ . 
It should be mentioned, that numerical experiments 

confirm the iteration process convergence. The criterion 
of iteration process completion is the coincidence (with 
necessary accuracy) of the corresponding values of 
functionals (4) on two successive iterations. 

Mathematical optimization method presented above is 
applied for solving problem of bunching efficiency 
maximization. Quality criterion BK  is defined as the 
proportion of particles getting required phase domain at 
buncher exit: ϕϕϕ Δ≤− , 0bWWW ≤− . Here ϕ  and 
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W  are correspondingly the phase and kinetic energy of 
particle at device exit, ϕ  and W  are mean values of the 

quantities mentioned; ϕΔ  and b  are given constants; 0W  
is initial energy of particles. This criterion is 
approximated by the functional of the form (6), where 
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)(uiA  are the functionals of the form (7) introduced to 
approximate average values of phase and energy at 
buncher exit; ε  is sufficiently small constant to provide 
required approximation accuracy. Quality functional 
gradient with respect to parameters (mismatches and 
positions of resonators) is obtained. 

Gradient optimization of device parameters is 
performed for klystron buncher with following main 
characteristics: keV5000 =W ; A10=I ; m006.0=a ; 

m003.0=R ; m125.0=λ ; input power kVt1=entP . 
The device contains four resonators with electric gap 
length 0.027 m. The required phase and energy intervals 
at buncher exit are as follows: 

92πϕϕ ≤− , 01.0 WWW ≤− . After the optimization 

bunching efficiency BK  increased from 0.34 until 0.67.  
The numerical experiments performed confirm the 

efficiency of developed mathematical methods of beam 
dynamics modeling and optimization. It should be noted, 
that these methods may be successfully applied for 
investigation of longitudinal and transverse beam 
dynamics in klystron-type buncher. 
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