TUPSA14

Proceedings of RuPAC2014, Obninsk, Kaluga Region, Russia

MATHEMATICAL OPTIMIZATION MODEL OF LONGITUDINAL BEAM
DYNAMICS IN KLYSTRON-TYPE BUNCHER*

L.D. Rubtsova”, SPbSU, Saint-Petersburg, Russia

Abstract

The paper presents recurrent integral-differential beam
evolution model. This model is convenient for
mathematical description of specific dynamic processes
with due account of particle interaction and electric fields
excitation by moving beam. On the basis of this model the
problem of beam dynamics optimization is formalized as
trajectory ensemble control problem. Analytical
expression for quality functional gradient is obtained.
Theoretical results are applied for solving problem of
beam dynamics optimization in klystron-type buncher.

RECURRENT INTEGRAL-
DIFFERENTIAL BEAM EVOLUTION
MODEL

Let us consider beam dynamics description by recurrent
system of integral-differential equations. Finite iteration
process is introduced. At every iteration beam evolution is
described by the equations of the following form:
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Here 7 €[0,7] is independent variable; T is fixed; k
is iteration number (l <k<K ) ;
vector of phase coordinates; u(z) is r-vector of control;

f (r xu, HE 1)(u)) and f (r x® y“‘)) are n -vector

x? (or y¥)is n-

functions; H*™"(u) is the matrix containing the values
fo”(u),s=1,_S,j=J],J2 of functionals defined on
beam trajectories at previous iteration; p(k)(r,x(k)) is
phase density corresponding to dynamic system (1);
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bounded initial phase domain; p,(x) is initial phase

densitys; it is supposed Jpo (x0)dx, =1.
MO
The components of every matrix H, [ = I,_K are the
values of functionals

HO@ = [ [C,, 030 500,00 (e s s dr, (@

oM

=15, j=J,,J,; here X" (z)= J.x(”p( (”)dx(f) is

M

average phase vector at / -th iteration. Note that H” = 0.

The resulting beam evolution is to be achieved at the
last iteration number K .

Beam evolution model suggested is based on
formalization and generalization of iterative method of
beam dynamics simulation in floating-drift klystron with
due account of Coulomb repulsion and RF fields
excitation in resonators. According to this method excited
fields are represented via induced current Fourier

decomposition [1]. Vector-function f, (z’,x("),u,H(k‘”(u))
is determined by the method of RF fields description.
Functional values (4) represent induced current Fourier
harmonics in resonators (excluding modulator) and are
used to express excited fields at next (l +1)—th iteration

thus to
fl(r,x(’”),u,H(’)(u)) in dynamics equation (1). Vector

and determine vector-function

function fz(z',x,y) is defined by particle interaction

accounting (in view of space-charge forces representation
given in [2]).

It should be noted that model (1)-(4) may be convenient
for wide class of beam evolution iterative descriptions
with due account of beam dynamics dependence on the
functionals defined on beam trajectories at previous
iteration. These functionals approximate the fields
generated by moving beam itself.

Beam evolution modeling with due account of the
fields mentioned (in particular, Coulomb forces) may be
performed in different ways [2-14]. Analytical
representation of these fields allows to formalize beam
dynamics optimization problem and to obtain quality
criterion gradient analytical expression [2,11,12].

OPTIMIZATION PROBLEM

Let us introduce quality criterion of the dynamic
process (1)-(4) as a function of functionals defined on
beam trajectories at finite iteration:
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smooth functions; are M -vectors of

T
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0 M%)
i= l,_N ,m= 1,_M , with smooth integrands. The
expressions (7) may be interpreted as particle

characteristics averaged over the device spatial cross-
sections (when 7 is the time or its analogue).

So beam dynamics optimization problem is reduced to
hill-climbing problem with objective functional (5)-(6).
This problem is investigated on the basis of mathematical
methods suggested by D.A. Ovsyannikov and widely
used for treatment different beam dynamics optimization
problems [2,3,7,11,12]. Analytical expression of criterion
functional (5)-(6) variation is derived in terms of auxiliary
functions satisfying the special equations on dynamic
system trajectories. This expression allows to obtain
objective functional gradient and to apply directed
optimization methods. The results obtained may be used
for beam dynamics optimization in different structures.

BEAM DYNAMICS IN BUNCHER:
MODELING AND OPTIMIZATION
Model (1)-(4) is used for beam evolution description in

klystron buncher. In this case independent variable is
T =ct, where c is the velocity of light, ¢ is the time;

[0, T ] is independent variable segment sufficiently large
for any particle to pass the n=2;

D= (xP,x) =", p*), where z is longitudinal
coordinate, p is reduced impulse of electron. RF fields in

structure;
resonators (except modulator) are simulated on the basis
of induced current first harmonics [1, 11];

S =x,/l+x2 522 0,22, Jy=J;
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Here J is total number of resonators; e is absolute value
of electron charge; m, is electron rest-mass; A is RF

field wavelength; U, and ®, are prescribed amplitude

and initial phase of RF field voltage in first resonator
(modulator); j is resonator number; p;, and Q, are

wave resistance and Q -factor; d; is electrical gap

length; &, is resonator center coordinate; smooth bell-

shaped function E /.(77) presents electric field intensity
distribution along the gap axis; €, is the mismatch angle;
0, = arctg(ZQj Afj/fo); Af;]fy is resonator mismatch
with respect to basic frequency f, =c/A; 1, (& h) is
smooth  approximation of the step function
(& h) =U(E+h)U(h—&), where U(n) is Heaviside
function; wu is the vector of control parameters:
U= (O oo sy fys Grveenynbe) . Where &, s
device exit coordinate; / is average beam current.
Electron beam is considered to have constant radius R
and to move inside the conducting channel of radius a.
Model particles are supposed to be disks-clouds
(cylinders) with radius R and thickness 2A. To describe
Coulomb forces we use the analytical expression for
electric field intensity [6]. Thus,
fum0: fialeay)= —p 2
R m,c’ 2me,cNR*

Zﬂg (m(xl—yl)j?

m=l1 /um /um
G, ()= [2gm (7)- g, +24)-g,(n-24)];

gm (77) = Slgl’l(n)(l _ e*ﬂ,,,‘i]‘/a),

where &, is electric constant; J,(77) is Bessel function of
the /-th order; p,,m=12,...
function J,(77).

It should be mentioned, that numerical experiments
confirm the iteration process convergence. The criterion
of iteration process completion is the coincidence (with
necessary accuracy) of the corresponding values of
functionals (4) on two successive iterations.

Mathematical optimization method presented above is
applied for solving problem of bunching efficiency
maximization. Quality criterion K, is defined as the

are the roots of Bessel

proportion of particles getting required phase domain at
buncher exit: |¢—g3| <Agp, |W - W| <bW,. Here ¢ and
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W are correspondingly the phase and kinetic energy of
particle at device exit, ¢ and W are mean values of the
quantities mentioned; A@ and b are given constants; W,

is initial energy of particles. This criterion is
approximated by the functional of the form (6), where

CD(z',x,u,A):

:Hg(%_AUAw]HS(Vl*—xZZ _A27b70)S5(x1 _éex)’

cos(7&/e)+1, ¢ <&

1
Sg(g):Z{O, |§|28,

A;(u) are the functionals of the form (7) introduced to

approximate average values of phase and energy at
buncher exit; ¢ is sufficiently small constant to provide
required approximation accuracy. Quality functional
gradient with respect to parameters (mismatches and
positions of resonators) is obtained.

Gradient optimization of device parameters is
performed for klystron buncher with following main
characteristics: W, =500keV; I=10A; a=0.006m;
R=0.003m; A=0.125m; input power P, =1kVt.
The device contains four resonators with electric gap

length 0.027 m. The required phase and energy intervals
at buncher exit are as follows:

lp—@| <27/9, W — | <0.1W, . After the optimization
bunching efficiency K, increased from 0.34 until 0.67.

The numerical experiments performed confirm the
efficiency of developed mathematical methods of beam
dynamics modeling and optimization. It should be noted,
that these methods may be successfully applied for
investigation of longitudinal and transverse beam
dynamics in klystron-type buncher.
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