
MEDIA SERVER FOR VIDEO AND AUDIO EXCHANGE BETWEEN THE
U-70 ACCELERATOR COMPLEX CONTROL ROOMS

I.V. Lobov, V.G. Gotman, IHEP, Protvino, Russia

Abstract
The media server was developed that implements the

exchange of video and audio streams between control
rooms for U-70 technological subsystems. Media server
has the possibility of making changes into the
intermediate video images to embed current technological
information. The media server is implemented as a set of
threads of execution, one for each video format
conversion module. The media server is a chain of
successive transformations of video and audio streams
from one format to another: H.264—Y4M—THEORA
formats for video, PCM—VORBIS formats for audio.
The final video and audio streams are encapsulated into
the OGG container stream which is translating into the
local network. OGG container has been chosen because of
its completely open, patent-free technology and full
support in HTML5. Any Web browser with full HTML5
support may be used as OGG stream consumer. The
browser client program has written with tag <video>
utilization. This allows for client to work on different
platforms (Linux, Windows) and get rid of third-party
video plug-ins.

INTRODUCTION
The aim of the work was to develop a dispatching

system for the organization of audio and video-sharing
between different U-70 technological subsystems in
IHEP. Requirements for the dispatching system were as
follows:
• Simple and convenient instrument of organizing the

conversations and conferences.
• The client software must run on different operation

systems.
• The software must use open-source free algorithms

and libraries.
• Do not use any special designed programs (plug-ins)

on the client side.
• The ability to modify the intermediate video images

in real time scale.
• To record the video and audio tracks into archive

with a possibility of quick search of the desired
fragments.

• The ability to transmit media information in
conjunction with digital technology data.

DISPATCHING SYSTEM STRUCTURE
The solution of the task lies in the following main ideas

(see Fig. 1):

• The dispatching system will use the IP-cameras with
video and audio transmit ability instead of
connecting to the PC webcams.

• The media server will provide data transmission
from IP-cameras to the clients in form of media
streams. Thus, instead of a set of programs for
different client’s operation systems only one
dispatching program will be written in.

• To use the benefits of the HTML5 for the client
access to the server.

IP-camera which makes your participation in the
conference does not need to be connected to the client
computer. Thus the client computer does not transmit any
media-streams to the server. It simply receives the media-
streams. At first, the client makes a connection to the
server. Next, the server connects to an IP-camera and
starts to receive the media-stream. Finally, the client
begins to receive the media-stream from the server.

Figure 1: The scheme of the data flow (blue arrows) and
the control flow (red arrows).

SOFTWARE INSTRUMENTS AND MEDIA
FORMATS STANDARDS

Programming Tools
The server part of the dispatching system was written in
Visual Studio 2012.

The libraries used in the project:
• JM 18.6,H.264/AVC Software, Karsten Suehring [1].
• libogg, version 1.3.2, Xiph.Org [2,3].
• libtheora, version 1.1.1, Xiph.Org [4].
• libvorbis, version 1.40, Xiph.Org [5].

The client part was written in HTML5 + JavaScript.

Media Server

Data base:
 the dispatching

system coordinator

Server program:
the media stream

coordinator

Video + audio
archive

IP-cam2 Client 2 Client 1 IP-cam1

THPSC31 Proceedings of RuPAC2014, Obninsk, Kaluga Region, Russia

ISBN 978-3-95450-170-0

386C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

11 Control and diagnostic systems

Media Exchange Standards
RTSP—Real Time Streaming Protocol designed to control
streaming media servers [6].
RTP over H.264—Real time Transport Protocol designed
to transmit H.264 video streams in real time scale [7].

Media Data Formats and Standards
H.264, MPEG-4 Part 10 or AVC (Advanced Video

Coding)—licensed video compression standards designed
to achieve a high compression ratio while maintaining
high video quality [1].

YUV—image color model, in which the color appears
as three components: the luminance (Y) and two
chrominance components (U and V). Luminance
component Y contains a "black and white" grayscale
image, and the remaining two components contain the
information required to restore the color. YUV is
convenient model for image recognition and intermediate
image replacement by changing the desired pixels. YUV
model will help in the future augmented reality
implementation which is intended to use in the
dispatching system [1].

OGG—open standard multimedia container format, it is
the main file and stream format for multimedia codecs
funded by Xiph.Org [2].

THEORA—free video codec for video compression
with losses developed by the Xiph.Org [4].

VORBIS—free audio compression format with losses
[5].

 The OGG format with VORBIS and THEORA content
is quite promising because of 1) free licensing and 2) the
ratio between sound and image quality and file size which
is the best among peers. The last factor is quite critical for
local networks when a large amount of packages is used
for media exchange. Owing to these, the OGG format
was selected as a container for the audio and video
transmission to the client.

SERVER PROGRAM DESCRIPTION
The server software is designed for transmitting data

streams between clients as shown in Fig. 2.
The transmission of the media from IP-camera to a web

browser is a chain of successive media transformations
from one format to another. The chain for media
transformation from IP-camera to the client is performed
by the server program. The server program connects to an
IP-camera, takes video and audio RTP-packets from the
camera. Then the received media information is analyzed
and altered (if necessary). Finally the media information
is sent to the client.

The server program consists of the software modules
which transform the information as follows:
• Module "MAIN"—establishes a connection to IP-

camera via RTSP and receives the data in real time
via RTP.

• Module "YUV"—converts the compressed video
format H.264 into uncompressed image format YUV
for further analysis.

• Module "OGG"—performs the transcoding of the
pair "Uncompressed video format YUV + Audio
format PCM [8]" into the THEORA and VORBIS
formats with subsequent encapsulation into an OGG
container.

• Module "TRAN"—transmits the OGG packets to
the client. The module connects to the database and
reports on its readiness for data transmission.

Figure 2: The data flow.

Program Organization as a Set of Threads
Program modules are implemented as separate threads,

one thread for each client. The data exchange between
threads is performed by means of intermediate buffers and
semaphores in order to synchronize the intermediate
buffer's reading and writing. The semaphores are needed
to prevent the possibility of data corruption when threads
use the intermediate buffers.

Four threads are used to transfer video and audio data
from a camera to a client. Thus, the data exchange
between two clients requires eight threads. The same
software procedures are used for both clients. This
imposes a requirement of using only re-entrant software.
In other words, it is necessary to use only two types of
variables:
• Local variables in procedures;
• In case of using global variables they should be

organized in the form of two-dimensional arrays.

Description of the MAIN Module
The main module of the server is started as a thread for

each client. It connects to the camera via RTSP. MAIN
module generates three threads (YUV, OGG, TRAN) for
processing and transmitting information to the client
browser. The task of MAIN is to take RTP packets from
the camera, analyze them and identify the types of the
packets (audio or video, single or fragmented).

Each RTP packet contains the NAL units of different
types [7]:
• SPS—the Sequence Parameter Set.
• PPS—the Picture Parameter Set.
• IDR—I frame.
• NONE-IDR—B- frame (move).

CLIENT 1:
IP-camera MAIN

YUV

OGG

CLIENT 2:
web browser

RTP-
packets

Video
format
H.264

Audio
format
PCM

Video
format YUV

Mediastream
OGG

audio Vorbis
+

video Theora

Image
modification

possible

Proceedings of RuPAC2014, Obninsk, Kaluga Region, Russia THPSC31

11 Control and diagnostic systems

ISBN 978-3-95450-170-0

387 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

The flow of the MAIN is implemented in infinite loop
which accepts incoming packets from the camera.

For video data, MAIN checks the packet loss, and if the
package was lost, the buffer is filled with the last full
frame received. In case no packet loss the buffer is filled
with all of the packets had come between two consecutive
packets containing SPS. Once the buffer is full, the flow
is stopped and the video data is copied to the YUV
module. When the copy is finished the flow continues.

In the contrary, audio data is sent directly to the OGG
module.

Description of the YUV Module
This software module is implemented in the form of an

infinite loop waiting for data from the main program
module (MAIN). After receiving the data, the YUV
decodes them from a compressed format H.264 to
uncompressed YUV format and transmits the transcoded
data to the OGG module.

Description of the OGG Module
The first step of the OGG module is to initialize OGG

header with THEORA and VORBIS content. OGG
module writes the header to the output buffer and begins
to wait for data from the YUV module, as well as the
TRAN module readiness. Upon the receiving the
uncompressed video data from YUV module, the OGG
module breaks them into frames. One uncompressed
frame makes IDR-frame while the others make NONE-
IDR frames (move). At the same time the OGG module
waits for the uncompressed PCM audio data from the
MAIN and encodes it in a compressed format VORBIS.

Finally, when the THEORA and VORBIS formats are
encoded into OGG container packets, the output is written
to the intermediate buffer for the TRAN module
processing.

Description of the TRAN Module
The TRAN module is waiting a request from the client

to join. After joining the TRAN module gets the data from
intermediate OGG buffer, divide it into packets with 1400
bytes length and sends them to the client.

CLIENT PROGRAM DESCRIPTION
The client program is implemented in the form of a

window containing the video and control buttons as
shown in Fig. 3. It connects to the database and sets the
"online" flag for other clients. At the same time it reads
the "online" flags from all other clients and the server.

The operator can connect to other clients and establish
connection with them. He can press the corresponding
button addressed to the desired remote client. After
getting answer the remote connection is established and
the video picture comes alive.

The connection buttons use 3 colors:
• Green—the client (server) is online.
• Red—the client (server) is offline.
• Yellow—operator requests the connection.

Figure 3: The scheme of the client interface.

CONCLUSIONS
Upon the development process of the media server

software a number of technical problems was resolved:
• Initially the chain of video stream consecutive format

conversions resulted in data loss. The solution
founded—a media server was organized as a set of
multiple interacting threads of execution.

• Initially the audio and video streams were gradually
diverging from each other due to the differences in
timing principles (audio is transmitting in frequency
units while video is transmitting in video frames).
The peculiar method of the audio and video stream
synchronization was developed—to use the
independent timing scheme, same for audio and
video.

• Initially the image was transferred choppy due to the
inconstant number of frames per second getting from
the camera. The problem was solved by counting the
actual number of frames per second.

A dispatching system scheme for U-70 Accelerator
Complex was developed and implemented. An optimal
method for the video and audio streams conversion was
achieved via threads of execution. As a consequence the
video and sound streams have no transcoding losses
whereby the media is played smoothly and correctly.

REFERENCES
[1] Karsten Suehring et al., H.264/AVC Software

Coordination; http://iphome.hhi.de/suehring/tml/
[2] S. Pfeiffer., The Ogg Encapsulation Format Version

0, RFC 3533; http://xiph.org/ogg/doc/rfc3533.txt
[3] I. Goncalves et al., Ogg Media Types, RFC 5334;

http://xiph.org/ogg/doc/rfc5334.txt
[4] Xiph.Org Foundation, Theora Specification;

http://theora.org/doc/Theora.pdf
[5] Xiph.Org Foundation, Vorbis I specification;

http://xiph.org/vorbis/doc/Vorbis_I_spec.pdf
[6] R. Lanphier et al., Real Time Streaming Protocol,

RFC 2326; http://www.ietf.org/rfc/rfc2326.txt
[7] Y.-K. Wang et al., RTP Payload Format for H.264

Video, RFC 6184; http://tools.ietf.org/html/rfc6184
[8] J. Salsman et al., The Audio/L16 MIME content type,

RFC 2586; http://tools.ietf.org/html/rfc2586

Server

Main Control Room

Control Room 1

Control Room 2

Video image

THPSC31 Proceedings of RuPAC2014, Obninsk, Kaluga Region, Russia

ISBN 978-3-95450-170-0

388C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

11 Control and diagnostic systems

