Author: Udrea, S.
Paper Title Page
WEPSB25 PRIOR Proton Microscope 214
 
  • D. Varentsov, P.M. Lang, M.E. Rodionova, L. Shestov, K. Weyrich
    GSI, Darmstadt, Germany
  • A.V. Bakhmutova, A.V. Bogdanov, A. Golubev, A.V. Kantsyrev, N.V. Markov, V.A. Panyushkin, A.I. Semennikov, V. Skachkov
    ITEP, Moscow, Russia
  • C.W. Barnes, F.G. Mariam, F.E. Merrill, C. Wilde
    LANL, Los Alamos, New Mexico, USA
  • S.V. Efimov, Y. Krasik, O. Oleg
    Technion, Haifa, Israel
  • A. Golubev
    MEPhI, Moscow, Russia
  • S. Udrea
    TU Darmstadt, Darmstadt, Germany
  • A.N. Zubareva
    IPCP, Chernogolovka, Moscow region, Russia
 
  Funding: Joint Helmholtz-ROSATOM FAIR-Russia Research Centre (HGF-IVF-IK-Ru-002)
The new proton radiography facility PRIOR* (Proton microscope for FAIR) was developed at SIS-18 accelerator at GSI (Darmstadt, Germany). PRIOR setup is designed for measurement, with high spatial resolution up to 10 mkm, of density distribution of static and dynamic objects by using a proton beam with energy up to 4.5 GeV. The magnetic system of the PRIOR beam-line consists of two sections. The first, matching section, contains electromagnetic-quadruple lenses and provides formation of a proton beam for the objects imaging task (beam size, angular distribution). The second section is a magnification (K ~4) section that consists of four Permanent Magnet Quadruples (PMQ) lenses. Tungsten collimators, installed at central plane of magnification section, provides regulation of contrast of the proton-radiographic images. Investigated object installed between first and second section. The registration system for static experiments consists of CsI scintillator and plastic scintillator (Bicron BC-412) for dynamic one with two types of intensified CCD cameras: PCO DiMAX and PCO DicamPro. In the first experiments with static objects with 3.6 Gev proton, was demonstrated a spatial resolution of 30 mkm. Dynamic commissioning was performed with target based on underwater electrical wires explosion with electrical pulse with current amplitude of ~200 kA and time duration of few microseconds.
* Merrill F.E. et al., Proton microscopy at FAIR, AIP Conf. Proc. 1195, 2009, p.667