Author: Teterev, Yu.G.
Paper Title Page
WECA12 SEE Testing Facilities at FLNR Accelerators Complex: State of the Art and Future Plans 152
 
  • S. Mitrofanov, B. Gikal, G.G. Gulbekyan, I.V. Kalagin, N.F. Osipov, S.V. Paschenko, V.A. Skuratov, Yu.G. Teterev
    JINR, Dubna, Moscow Region, Russia
  • V.S. Anashin
    United Rocket and Space Corporation, Institute of Space Device Engineering, Moscow, Russia
 
  Funding: This work was sponsored by the Russian Federal Space Agency by special agreement between Institute of Space Device Engineering and Joint Institute for Nuclear Research.
The Russian Space Agency (Roscosmos) utilizes U400 and U400M cyclotrons at accelerator complex of the Flerov Laboratory of Nuclear Reactions (FLNR) of the Joint Institute for Nuclear Research (JINR) in Dubna for heavy ion SEE testing. The ions up to the Xe and Bi with the energy up to 40 AMeV are available for the users. The detailed overview of the facility and the features of diagnostic set-up used for ion beam parameters evaluation and control during SEE testing are discussed. The road map for the strategic development of this field in FLNR is presented.
* Proceedings of RADECS 2011 PJ-8, pp.756-759, 2012.
** Proceedings of PAC09, Vancouver, BC, Canada FR5REP099, pp. 5011-5013, 2009.
 
slides icon Slides WECA12 [1.485 MB]  
 
THPSC09 The Project of Beam Transportation Lines for the DC-280 Cyclotron at the FLNR JINR 336
 
  • G.G. Gulbekyan, B. Gikal, G.N. Ivanov, I.V. Kalagin, V.I. Kazacha, N.Yu. Kazarinov, M.V. Khabarov, V.N. Melnikov, N.F. Osipov, Yu.G. Teterev, A. Tikhomirov
    JINR, Dubna, Moscow Region, Russia
 
  The project of beam lines for carrying out physical experiments at the DC-280 cyclotron which is being created at the FLNR JINR is presented. The commutating magnet with variable magnetic field induction up to 1.5 T gives us possibility to bend ion beams in five directions providing ion transportation through beam lines to five experimental setups. The beam focusing in the beam lines is provided by set of quadrupole lenses having the gradients up to 7.7 T/m. The beam lines are intended for the efficient ion transportation of elements from Helium to Uranium with the atomic mass to charge ratio in the range of 4-7.5 at energies from 4 up to 8 MeV/amu. The ion beam power will reach the value about 3 kW. The water cooled current aperture diaphragms will be installed into all beam lines to prevent the tube damage. The beam diagnostics consists of the Faraday caps (FC), slit collimators, sector aperture diaphragms and ionization beam profile monitors.