Paper | Title | Page |
---|---|---|
TUPSA04 | Operating Frequency and Accelerating Structure Geometry Chose for the Travelling Wave Compact Electron Linear Accelerator | 42 |
|
||
For the compact electron linear accelerating structure based on the hybrid scheme which consists from SW biperiodic structure buncher and TW DLS with magnetic couple TW accelerating part, the best option for the operating frequency and cells geometry has been chosen. Comparative calculations for the DLS cells with magnetic couple and without it, on the different operating frequencies and with the different couple coefficient were carried out. The best option will be manufactured, measured and used in the accelerator structure. | ||
TUPSA05 | Three Electrode Electron Gun with the Decreased Anode Voltage Geometry Optimization | 45 |
|
||
Three electrode gun, consisting of spherical cathode, control electrode and anode, has been designed. Anode potential was varying between 30 kV and 50 kV. For the each potential the control electrode potential has been chosen to achieve the smallest beam crossover in the middle of the first accelerator cell. Calculations was based on the model of the already existing gun – electron injector in the linear accelerator. Then all calculations for the different anode voltages has been repeated for the biger cathode, that means – different cathode electrode geometry. The result to use in the further accelerator calculations has been achieved. | ||
TUPSA06 | Beam Dynamics Calculation in the Induction Linear Accelerator | 48 |
|
||
The geometry of the induction electron accelerator, which will be used for high current acceleration, has been calculated. For the different currents values the optimum focusing magnetic field and has been obtained. Also a current in the compensative coil near the cathode has been calculated. The cathode electrode geometry was changing to achieve minimum beam oscillations during the acceleration. | ||
TUPSA09 | Beam Dynamics Calculations in the Multi-Beam Generator Cavity | 54 |
|
||
In the previously designed, calculated and tuned structure of the compact generator-cavity the beam dynamics for the different geometry options has been calculated. The influence of injected beam parameters to the output power value has been overviewed. Also the geometry of the beam tubes and couple coefficient between cavity and the output waveguide has been optimized to reach the maximum output power value. | ||
WEPSB08 | Multi-beam Generator Cavity for the Proton Linear Accelerator Feeding System on 991 MHz Frequency Geometry Optimization | 171 |
|
||
For the proton linear accelerator feeding system 800 kW input power value is required. The system consists from pillbox cavity with six beam tubes connected to the rectangular waveguide as a power output system is designed. In case of using high voltage gun with modulated six-bunch injection, this system allows to transform the energy of electron bunches which flies throw beam tubes to accelerating section feeding power. Different types of the structure geometry were calculated. The whole structure consists both from generator cavity and accelerating structure has been designed. | ||
THPSC05 | Study of Possibility of 600-1000 MeV and 1 MW Proton Driver Linac Development in Russia | 324 |
|
||
Funding: This project was supported by the Ministry of Science and Education of Russia under contract No. 14.516.11.0084 Alternative nuclear energetic's technologies as fast reactors and accelerating driven systems (ADS) are necessary to solve a number of problems as U-238 or thorium fuel reactor and nuclear wastes transmutation. ADS subcritical system should consist of megawatt-power proton accelerator, neutron producing target and breeder. A number of ADS projects are under development in EU, Japan, USA, China, S.Korea at present. Superconducting linacs or their complexes with high energy storage synchrotron are under design in main projects as a megawatt power proton beam driver. In Russian Federation the complex design for accelerator-driver was carried down more than ten years ago. The new approach to the ADS complex is now under development in framework of the project carried out by collaboration between Russian scientific centers MEPhI, ITEP, Kurchatov Institute. This project was supported in 2013 by the Ministry of Science and Education of Russia. A brief results observation for accelerator part of the project is presented in report. It includes accelerator-driver general layout, beam dynamics simulation, electrodynamics simulations of accelerating cavities and analysis of technological background in Russia. |
||
THPSC38 | Development of the Software for the Accelerating Fields in Linear Structures Measurement | 407 |
|
||
The software which allows controlling the whole installation to measure electric fields in the linear structures has been developed. The installation consists of linear structure, step motor drive, motor controller, a probe which moves on the string throw the structure to perturb the field to use the perturbation measuring method, network vector analyzer and the PC. He software interface is user-friendly, user only needs to write down the length of the structure, a desired step of the probe and push the start button. As a result user can obtain the picture of electric field on the structure axis. It is possible to choose between two measuring methods: by S11 of by S21. | ||