Author: Nikitin, A.A.
Paper Title Page
TUPSA28 The Advanced Nanostructure Steel Modification by Gas Ions Beams 97
 
  • S.L. Andrianov, B.B. Chalykh, P.A. Fedin, B. Kondratiev, A.V. Kozlov, R.P. Kuibeda, T. Kulevoy, A.A. Nikitin, S.V. Rogozhkin, A. Sitnikov
    ITEP, Moscow, Russia
 
  New constriction materials are under developing for the energy sector. They will provide: energy prodaction, store and transportation with high efficiency and ecology safety. One of the main modern direction of new materials developing are nanostructures steel which consolidation oxide dispersion strengthened (ODS). ODS and EK-181 steels have high hot, radiation and corrosion resistance. The experimental program for investigation of nanoclusters generation and growth (in ODS steels) under irradiation of N (and also Ti, V) ion beams is ongoing in ITEP. Ion irradiation is performed at the accelerator complex TIPr with gas ion source– duoplasmatron. In this article the source installation and it's power systems development of, as well as the results of ion beam charge state distribution measurements and the first results of ODS materials irradiation by gas ions are described and discussed.  
 
WEPSB48 Status of Experiments on Surface Modification of Materials on the Accelerator HIP-1 269
 
  • S.L. Andrianov, A.A. Aleev, A. A. Andreev, D. Aparin, A.A. Bogachev, B.B. Chalykh, P.A. Fedin, A. Golubev, N.A. Iskandarov, G. Kropachev, R.P. Kuibeda, T. Kulevoy, A.A. Nikitin, N.N. Orlov, S.V. Rogozhkin, A. Sitnikov
    ITEP, Moscow, Russia
 
  Ion-implant doping is efficient method of modification for near-surface layers material which used in different technological applications. The most common example of its is increase wear, corrosion, heat resistance of various industrial steels, special alloys implantation for applications in biology and medicine, surface layers of polymers strengthening and changes in the morphology. Works in this direction is executing on TIPR-1 accelerator in ITEP. Bunches of titanium and vanadium which are generated in MEVVA and nitrogen beams are generated in duoplasmatron was mastered acceleration to provide of experimental work. Several series of experiments on the modification of the surface of samples for further study by atomic probe tomography and transmission electron microscopy executed. Nanostructure of the surface layers of oxide dispersion strengthened steels exposed to ion beams showed makeover.