Author: Nesterovich, A.
Paper Title Page
TUPSA11
Longitudinal Dynamics of a Bunch of Charged Particles in a Traveling Wave Field  
 
  • V.K. Baev, B.Y. Bogdanovich, A. Nesterovich
    MEPhI, Moscow, Russia
 
  The longitudinal dynamics of a bunch of charged particles in a traveling wave field has been studied. A Lagrange function for this motion is constructed and the Lagrange equation describing longitudinal envelopes of the bunch is derived. The obtained equation describes longitudinal envelopes of a bunch of charged particles. It is advantageous to the well-known equations of envelopes, primarily, in being simple. Additional advantages are as follows. First, the solutions of equation determine not only the longitudinal size of a bunch, but also the width of its energy spectrum. Second, the equation has been derived without any restrictions imposed on the bunch length (phase space dimension), so that the model is nonlinear and, hence, more general. Third, the equation takes into account the acceleration of a bunch. Finally, Lagrange equation takes into account the force of the intrinsic Coulomb field of a bunch in terms of the naturally included ellipsoid model, so that this envelope equation is self-consistent.  
 
THPSC37 A Pulse Generator of X-Ray Quants for Remote Radiation Monitoring 404
 
  • A.V. Il'inskiy, B.Y. Bogdanovich, D.R. Khasaya, A. Nesterovich, A.E. Shikanov
    MEPhI, Moscow, Russia
 
  For effective implementation of modern methods of X-raying required equipment complexes with increased requirements to the generator X-rays compared to conventional devices used in radiography. These requirements basically boil down to the fact that the radiation source along with small dimensions should provide at least 0.5 m from the target minimum exposure dose of about 10 mR for 1 with the appliance with a minimum area of the radiating surface of the target. These parameters are obtained by using X-rays generator based on high-current diode accelerating tube (AT) operating in the pulse-periodic regime at current amplitude of the accelerated electrons in the tube Im ~ 1 kA, pulse duration 1-10 ns and a maximum energy of electrons reaching several hundred keV The report presents the development of compact AT, which improved definition x-ray image is ensured by using a diode system with a coaxial geometry acceleration of electrons to the anode electrode internal target and explosive emission cathode. AT used to run a specially designed high-voltage pulse transformer-based "Tesla" with surge sharpener. Describes the design and block diagram interface generator X-ray quanta. Feature is the high stability of the generator is not dependent on the voltage, battery charge. Presented the results of experimental testing of the generator X-ray quanta. Also shows the waveform duration x-ray pulses in the presence of the lead filter and without it.  
 
THPSC49 Hydrogen Nuclides Removing From Pulse Plasma Formations 438
 
  • B.Y. Bogdanovich, A. Nesterovich, V.L. Shatokhin, A.E. Shikanov
    MEPhI, Moscow, Russia
 
  The features of hydrogen nuclides extraction from vacuum-arc plasma and laser sources by electric field research results are presented in the report. Such sources can be used in accelerators injection systems and in neutron generators. These processes, found, are strongly influenced by electrostatic oscillations in the plasma boundary, which position continuously varies, in addition to the ions thermal motion. Such movement kinematics determined by the velocity field in plasma formation and its concentration reducing because of the ions extraction. On the basis of this model it shows that plasma boundary moves initially in the direction to the ejection electrode, then stops and begins quickly move back. An equation for the nuclides emission current density from hydrogen plasma surface for their quasiplanar extraction geometry is obtained.  
 
THPSC50 Neutron Accelerating Tubes with Microwave Deuterons Source Using Electron-cyclotron Resonance Effect 441
 
  • A.N. Didenko, B.Y. Bogdanovich, K.I. Kozlovskiy, A. Nesterovich, A.V. Prokopenko, V.L. Shatokhin, A.E. Shikanov
    MEPhI, Moscow, Russia
 
  The physical principles of increased efficiency neutron accelerating tubes based on the microwave sources of heavy hydrogen nuclides, using the electron-cyclotron resonance effect (ECR) are considered. The authors' theoretical results are given on electromagnetic oscillations generation in the working volume of the ion source of the accelerating tube with the boundary excitation of a microwave discharge. Resonator and waveguide modes for ECR-plasma excitation are thus examined. Features of neutron generation in these accelerator neutron tubes based on microwave source of heavy hydrogen nuclides are analyzed. The algorithm is developed and numerical simulation of neutron pulse formation in neutron generators based on microwave source is done taking into account target shape and the possible deuterons resonant recharge. Frequency dependences of the energy flux density transmitted from an alternating electromagnetic field to the electron component of the plasma are obtained depending on the constant longitudinal magnetic field induction and pressure in the discharge chamber. The results of these studies could form the basis for the efficient domestic portable neutron generators development based on accelerating tubes with microwave hydrogen nuclides sources.