Paper | Title | Page |
---|---|---|
TUZ02 | Accelerator Technologies Development at ITEP | 34 |
|
||
Restart of scientific activity at ITEP associated with join it to the pilot project of NRC "Kurchatov Institute" is the occasion for summing up of intermediate results and existing capability of accelerator physics and technologies development in the institute. School of accelerators construction at ITEP has old traditions and refers on studying, invention, mastering and implementation to operation of technological features of proton and ion beams generation, transportation, acceleration, accumulation, extraction and space-time formation for usage of accelerated beams in physical experiments and applied research works. Historical survey and current state of accelerator science activity at ITEP are presented. | ||
![]() |
Slides TUZ02 [2.051 MB] | |
TUPSA07 | Transit Code for Beam Dynamic Simulation | 51 |
|
||
Multiparticle computer code TRANSIT for simulation of intense ion beams in linacs and transport systems is presented. The code is based on experience in design of ion linacs in ITEP. TRANSIT summarizes the most actual and modern methods and algorithms for integration of motion equations including space charge forces. It is being used in ITEP for design and simulation of conventional RFQs, spatially periodic RF focusing linacs, beam transport systems, RF deflectors, etc. The paper presents general description of TRANSIT code and some achieved results. | ||
THPSC07 | Single Frequency High Intensity High Energy Normal Conducting Hadron Linac | 330 |
|
||
Funding: Work is supported by IHEP with contract № 0348100096313000178 Taking the care for beam quality and the possibility of practical realization, the scheme and parameters for 400 MeV H− linac are considered. The concepts for beam emittance preservation, both transverse and longitudinal, starting from RFQ, following with PMQ focusing DTL and finishing with high energy CCL part are summarized. Different focusing schemes are analyzed for DTL and CCL parts. The pulse beam current is limited to the safe value 40 mA and the average current up to 2 mA is supposed by duty factor of 5%. The single operating frequency 352 MHz is for all linac parts, providing the strong unification both for RF system and elements of accelerating structures. Referring and comparing with existing solutions for another intense linacs, the feasibility and reality of the proposal is confirmed. Expected performances both in beam, parameters and hardware are summarized. |
||