Paper | Title | Page |
---|---|---|
WEPSB38 | Multifunctional Extraction Channel Development Heavy Ion RFQ (Radio Frequency Quadrupole) | 245 |
|
||
In the ITEP the Heavy Ion RFQ HIP-1 (Heavy Ion Prototype) provides ion beams for two different experimental programs. The first one is successfully ongoing and it is aimed to irradiation resistance investigation of reactor construction materials. Samples of new materials for reactors are irradiated by beams of iron, vanadium ions accelerated by the linac. The structure changes are investigated by both transmission electron microscope and atom-probe tomography. The second one is under development and it is aimed to investigate ion beam interaction with plasma and metal vapor targets. On the basis of beam dynamics simulation the design of new RFQ-output line for both experiments realization was developed. Details of beam dynamics simulation and output line design are presented and discussed in this paper. | ||
THPSC05 | Study of Possibility of 600-1000 MeV and 1 MW Proton Driver Linac Development in Russia | 324 |
|
||
Funding: This project was supported by the Ministry of Science and Education of Russia under contract No. 14.516.11.0084 Alternative nuclear energetic's technologies as fast reactors and accelerating driven systems (ADS) are necessary to solve a number of problems as U-238 or thorium fuel reactor and nuclear wastes transmutation. ADS subcritical system should consist of megawatt-power proton accelerator, neutron producing target and breeder. A number of ADS projects are under development in EU, Japan, USA, China, S.Korea at present. Superconducting linacs or their complexes with high energy storage synchrotron are under design in main projects as a megawatt power proton beam driver. In Russian Federation the complex design for accelerator-driver was carried down more than ten years ago. The new approach to the ADS complex is now under development in framework of the project carried out by collaboration between Russian scientific centers MEPhI, ITEP, Kurchatov Institute. This project was supported in 2013 by the Ministry of Science and Education of Russia. A brief results observation for accelerator part of the project is presented in report. It includes accelerator-driver general layout, beam dynamics simulation, electrodynamics simulations of accelerating cavities and analysis of technological background in Russia. |
||