Author: Didenko, A.N.
Paper Title Page
THPSC05 Study of Possibility of 600-1000 MeV and 1 MW Proton Driver Linac Development in Russia 324
 
  • S.M. Polozov, A.E. Aksentyev, K.A. Aliev, I.A. Ashanin, Y.A. Bashmakov, A.A. Blinnikov, T.V. Bondarenko, A.N. Didenko, M.S. Dmitriyev, V.V. Dmitriyeva, V.S. Dyubkov, A.M. Fadeev, A. Fertman, M. Gusarova, A.A. Kalashnikova, V.I. Kaminsky, E. Khabibullina, Yu.D. Kliuchevskaia, A.D. Kolyaskin, T. Kulevoy, M.V. Lalayan, S.V. Matsievskiy, V.I. Rashchikov, A.V. Samoshin, E.A. Savin, Ya.V. Shashkov, A.Yu. Smirnov, N.P. Sobenin, S.E. Toporkov, O. Verjbitskiy, A.V. Ziiatdinova, V. Zvyagintsev
    MEPhI, Moscow, Russia
  • P.N. Alekseev, V.A. Nevinnitsa
    NRC, Moscow, Russia
  • V.F. Batyaev, G. Kropachev, D.A. Liakin, S.V. Rogozhkin, Y.E. Titarenko
    ITEP, Moscow, Russia
  • S. Stark
    INFN/LNL, Legnaro (PD), Italy
 
  Funding: This project was supported by the Ministry of Science and Education of Russia under contract No. 14.516.11.0084
Alternative nuclear energetic's technologies as fast reactors and accelerating driven systems (ADS) are necessary to solve a number of problems as U-238 or thorium fuel reactor and nuclear wastes transmutation. ADS subcritical system should consist of megawatt-power proton accelerator, neutron producing target and breeder. A number of ADS projects are under development in EU, Japan, USA, China, S.Korea at present. Superconducting linacs or their complexes with high energy storage synchrotron are under design in main projects as a megawatt power proton beam driver. In Russian Federation the complex design for accelerator-driver was carried down more than ten years ago. The new approach to the ADS complex is now under development in framework of the project carried out by collaboration between Russian scientific centers MEPhI, ITEP, Kurchatov Institute. This project was supported in 2013 by the Ministry of Science and Education of Russia. A brief results observation for accelerator part of the project is presented in report. It includes accelerator-driver general layout, beam dynamics simulation, electrodynamics simulations of accelerating cavities and analysis of technological background in Russia.
 
 
THPSC50 Neutron Accelerating Tubes with Microwave Deuterons Source Using Electron-cyclotron Resonance Effect 441
 
  • A.N. Didenko, B.Y. Bogdanovich, K.I. Kozlovskiy, A. Nesterovich, A.V. Prokopenko, V.L. Shatokhin, A.E. Shikanov
    MEPhI, Moscow, Russia
 
  The physical principles of increased efficiency neutron accelerating tubes based on the microwave sources of heavy hydrogen nuclides, using the electron-cyclotron resonance effect (ECR) are considered. The authors' theoretical results are given on electromagnetic oscillations generation in the working volume of the ion source of the accelerating tube with the boundary excitation of a microwave discharge. Resonator and waveguide modes for ECR-plasma excitation are thus examined. Features of neutron generation in these accelerator neutron tubes based on microwave source of heavy hydrogen nuclides are analyzed. The algorithm is developed and numerical simulation of neutron pulse formation in neutron generators based on microwave source is done taking into account target shape and the possible deuterons resonant recharge. Frequency dependences of the energy flux density transmitted from an alternating electromagnetic field to the electron component of the plasma are obtained depending on the constant longitudinal magnetic field induction and pressure in the discharge chamber. The results of these studies could form the basis for the efficient domestic portable neutron generators development based on accelerating tubes with microwave hydrogen nuclides sources.