Paper | Title | Page |
---|---|---|
TUPSA16 | Electron Gun with Adiabatic Plasma Lens | 72 |
|
||
Funding: This work supported by the Russian Foundation for Basic Research (grant № 12-02-00866-а) For researches on plasma physics has been designed and constructed the electronic gun with the cold cathode on energy about 250 keV. The electron beam have the parameters: time width of pulses 100 ns, current amplitude 100 A. The adiabatic plasma lens is used to reduce the beam size to the demanded value. The results of tests are presented. |
||
TUPSA30 |
Analysis of the Magnetic Field Distribution of PMQ Lenses for PRIOR Setup | |
|
||
Funding: Joint Helmholtz-ROSATOM FAIR-Russia Research Centre (HGF-IVF-IK-Ru-002) As part of the FAIR project, HEDgeHOB collaboration involves developments of PRIOR* proton-radiographic facilities, one of the purposes of which is to study the state of matter in extreme conditions. In the currently in GSI (Darmstadt, Germany), prototype of PRIOR proton microscope setup is developing, this setup designed for the use of proton beam with energy of 4.5 GeV. Magnetic optics of PRIOR proton microscope forming section consists of four quadrupole lenses created on the basis of permanent magnets (PMQ). For best quality (linearity, magnetic axis position, angle of median plane) of the magnetic field of quadrupole lenses and a full-scale setup simulation is necessary to measure the magnetic field inside the lenses. For the measurement of the magnetic field (radial component of the magnetic field) of quadrupole lenses are designed and developed magnetic field scanner. Scanning of the magnetic field is performed on cylindrical surface near the inner surface of PMQ lenses. Based on the results of scanning the radial component of the magnetic field will be carried out calculations of the mathematical model (developed in ITEP)**, which describes the distribution of the magnetic field at any point within the aperture of the lens. In this work presents the results of the calculation of all components of the magnetic field, determining the position of the magnetic axis,harmonic analysis and the analysis of non-linearity of the magnetic field for PRIOR PMQ lenses. *D. Varenstov et.al.; PRIOR for GSI and for FAIR; 4th International Workshop on HEPM, 2013 **V.S. Skachkov et.al.; REPM Quadrupole for Proton Microscopy; 2th International Workshop on HEPM, 2010 |
||
WEPSB25 | PRIOR Proton Microscope | 214 |
|
||
Funding: Joint Helmholtz-ROSATOM FAIR-Russia Research Centre (HGF-IVF-IK-Ru-002) The new proton radiography facility PRIOR* (Proton microscope for FAIR) was developed at SIS-18 accelerator at GSI (Darmstadt, Germany). PRIOR setup is designed for measurement, with high spatial resolution up to 10 mkm, of density distribution of static and dynamic objects by using a proton beam with energy up to 4.5 GeV. The magnetic system of the PRIOR beam-line consists of two sections. The first, matching section, contains electromagnetic-quadruple lenses and provides formation of a proton beam for the objects imaging task (beam size, angular distribution). The second section is a magnification (K ~4) section that consists of four Permanent Magnet Quadruples (PMQ) lenses. Tungsten collimators, installed at central plane of magnification section, provides regulation of contrast of the proton-radiographic images. Investigated object installed between first and second section. The registration system for static experiments consists of CsI scintillator and plastic scintillator (Bicron BC-412) for dynamic one with two types of intensified CCD cameras: PCO DiMAX and PCO DicamPro. In the first experiments with static objects with 3.6 Gev proton, was demonstrated a spatial resolution of 30 mkm. Dynamic commissioning was performed with target based on underwater electrical wires explosion with electrical pulse with current amplitude of ~200 kA and time duration of few microseconds. * Merrill F.E. et al., Proton microscopy at FAIR, AIP Conf. Proc. 1195, 2009, p.667 |
||