RUPAC 2012, St. Petersburg, 24-28 September

DEVELOPMENT of FLNR JINR HEAVY IONS ACCELERATOR COMPLEX (DRIBs III)

G.Gulbekian

Flerov Laboratory of Nuclear Reactions JINR

U400 Cyclotron (1978)

FLNR - 2011

FLNR accelerator operation time in 1996-2011

Accelerator	Operation time in 1996 - 2011
U-400	83000 h
U-400M	42000 h
U-200	8 500 h
MT-25	14 000 h

∑ 147 500 h

Future accerators for SHE programs

Center	Accelerator type	Intensity ⁴⁸ Ca, pµA	Realisation				
MSU	SC Linac	10	2018÷2020				
SPIRAL II	SC Linac	10	2013÷2016				
GSI	SC Linac	10	2013÷2015				
RIKEN	Ring Cyclotron	10	2011÷2013				
Dubna	Compact Cyclotron	10	2014				

NEW FLNR ACCELERATOR – CYCLOTRON DC280

In order to improve efficiency of the experiments for the next 7 years it is necessary to obtain the accelerated ion beams with following parameters.

Energy	4÷8 MeV/n
Masses	10÷238
Intensity (up to A=50)	>10 pµA
Beam emittance less 30π mm·mrad	
Efficiency of beam transfer >50%	

DC280. Parameters and Goals

	DC280 Parameter	Goals
1.	High injecting beam energy (up to 100 kV)	Shift of space charge limits for factor 30
2.	High gap in the center	Space for long spiral inflector
3.	Low magnetic field	Large starting radius. High turns separation. Low deflector voltage
4.	High acceleration rate	High turns separation.
5.	Flat-top system	High capture. Single orbit extraction. Beam quality.

DC230

Main Parameters

Ion source	DECRIS-4 - 14 GHz
	DECRIS-SC3 - 18 GHz
Injecting beam potential	Up to 100 kV
A/Z range	4÷7
Energy	4÷8 MeV/n
Magnetic field level	0.6÷1.35 T
K factor	280
Gap between plugs	400 mm
Valley/hill gap	500/208 mm/mm
Magnet weight	1000 t
Magnet power	300 kW
Dee voltage	2x130 kV
RF power consumption	2x30 kW
Flat-top dee voltage	2x14 kV

Иваненко И.А.

Калагин Н В

<u>DC280</u>

DC280 Cyclotron

DC280 axial injection beam line

Particle trajectories

Horizontal (upper curve), vertical (lower curve) Ar⁷⁺ beam envelopes Longitudinal magnetic field – green line, apertures – red line

DC280 axial injection beam line

Working Diagram of the DC280 Cyclotron

DC280 cyclotron central region

The view of DC280 cyclotron central region with inflector and quadrupole lens

Radial and vertical emittances at the inflector exit

DC280 «FLAT-TOP» RF SYSTEM

The beam energy spread at the 5-th orbit without «flat-top» RF system

The beam energy spread at the 5-th orbit with «flat-top» RF system

orbits with «flat-top» system

Input and output phases of particles for 2 harmonic bunching system

Time dependence of particle density at median plane

Estimated efficiency of capture into acceleration is 66%

DC280 plan view and beam extraction structure

DC280 . Intensity of some typical ion beams

20Ne	1·10¹⁴ pps
48Ca	6·10¹³ pps
50Ti	3·10¹³ pps
70Zn	2,5·10 ¹³ pps
86Kr	3·10¹³ pps
100Mo	2·10¹² pps
124Sn	2·10 ¹² pps
136Xe	2·10¹³ pps
208Pb	1⋅10 ¹² pps
238U	1.10 ¹¹ pps

First floor

Flerovlab Building 131

SHE factory

Building computer model

FLNR - 2015

FLNR

Schedule of the SHE factory creation

2011	2012	2013	2014	2015
		l		

DC280 cyclotron

THANKS FOR YOUR ATTENTION!

ПЛАН-ГРАФИК

финансирования работ по созданию, комплектации и монтажу оборудования циклотронного комплекса Экспериментального корпуса ЛЯР (в М\$)

N₂N₂	Наименование работ	2011	2012	2013	2014	2015	Итого по теме
пп							
1	Строительство,						
	инженерные системы						
2	Магнит циклотрона	0,25	2,25	2,5	2,35		7,35
3	Высоковольтная платформа				1,0		1,0
	инженерного пучка						
4	Система высоковольтного			0,2	0,2		0,4
	питания						
5	Источник ионов типа ECR			0,25	0,25		0,5
6	Система аксиальной				0,5		0,5
	инжекции						
7	Вакуумная камера			0,2			0,2
	циклотрона						
8	Система диагностики				0,1		0,1
	пучков						
9	Основные обмотки			0,3	0,3		0,6
10	электромагнита циклотрона						
10	Корректирующие катушки			0,2	0,2		0,4
11	Коммутирующий магнит			0,3	0,3		0,6
12	Ускоряющие структуры				1,2		1,2
13	Каналы транспортировки				1,4		1,4
1.4	пучков			0.6	0.6		
14	Вакуумная система			0,6	0,0		1,2
15	Система водоохлаждения			0,0	0,4		1,0
16	Система электропитания			0,6	0,15		0.75
17	Система контроля и			0,25	0,7		0,95
10	управления		0.75				4.5
18	Разработка проектной	0,/5	0,75				1,5
10	документации				2		2
19	Монтаж и наладка				2		2
20	Получение ускоренного						
	пучка						
	Итого по годам	1 M\$	3,0 M\$	6 M\$	12 M\$		22 M\$

Проект

План-график разработки технических заданий на узлы циклотронного комплекса DC280

N₂	Наименование	2011 г.													2012 г.											Ответственный
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	
Oc	Основной магнит																									
1.	Магнитопровод																									Иваненко И.А.
2.	Основные катушки																									Иваненко И.А.
3.	Сектора, шиммы,																									Иваненко И.А.
	пробки																						-			
4.	Корректирующие																									Иваненко И.А.
	катушки										ļ				 	ļ								ļ		
5.	Электропитание,													I I												Иваненко И.А.
	управление																									
6.	Водоохлаждение																									Иваненко И.А.
-																				1]					
цег	тральная оптика					1			1	1		1												TT TT (
7.	Инфлекторы,																									Иваненко И.А.
	электропитание,													I I												
	управление													I	<u> </u>	<u> </u>		<u> </u>		<u> </u>						
8.	Геометрия													I I												Иваненко И.А.
	центральной													I I												
	области																									
	В.ч. система																									
9.	Основные																									Бузмаков В.А.
	резонаторы																									
10.	Связь фидер-																									Бузмаков В.А.
	резонатор осн.																									
	резонатора																									
11.	Pick-up элементы																									Бузмаков В.А.
	осн. резонатора																									

														Проект												
N⁰	Наименование	2011 г. 2012 г.													Ответственный											
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	
12.	Flat-top резонаторы																									Бузмаков В.А.
13.	Система в.ч.																									Калагин И.В.
	банчеров																									
14.	Системы в.ч.																									Бузмаков В.А.
	питания																									
15.	Система управления																									Бузмаков В.А.
	В.Ч.																									
	Высоковольтная пла	тфој	рма,	нс	точн	икі	нонс)B																		
16.	Конструкция в.в																									Богомолов С.Л.
	платформы,																									Ефремов А. А.
	размещение																									
	оборудования																									
17.	Ионный источник,																									Богомолов С.Л.
	система																									Ефремов А. А.
	электропитания,																									
	управления,																									
	контроля																									
18.	Ионно-оптические																									Богомолов С.Л.
	элементы тракта																									Ефремов А. А.
	высоковольтной]		
	платформы,																									
	электропитание,																									
	управление,																									
10	контроль									 																D C T
19.	Вакуумные камеры																									Богомолов С.Л.
	тракта в.в																									Ефремов А. А.
-	платформы																									D O T
20.	Вакуумная система																									Богомолов С.Л.
	тракта в.в.																									лаоаров м.в.
- 1	платформы																									Г
21.	Система																									Богомолов С.Л.
	электропитания в.в																							T		пащенко С.В.
	платформы																									
																										Проект
-----	--------------------	------	-----------------	------	------	------	------	-----	-----	----	------	----	---------------	---	---	---	---	---	---	---	-----	---	----	----	----	-----------------
N₂	Наименование		2011 г. 2012 г.										Ответственный													
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1
22.	Система																									Богомолов С.Л.
	водоохлаждения																									Веревочкин В.А.
	в.в. платформы																									
23.	Система																									Богомолов С.Л.
	диагностики пучка																									Калагин И.В
	на в.в платформе,																									
	система контроля и																									
	управления																									
	Система транспорт	ирон	вки	и ан	ксия	льн	ой и	нже	кци	ип	учка															
24.	Компоновка																									Калагин И.В.
	оборудования																									
25.	Вакуумные камеры																									Калагин И.В.
26.	Ионно-оптические																									Калагин И.В.
	элементы,																									
	электропитание,																									
	контроль,																									
	управление,																									
	водоохлаждение																									
27.	Элементы																									Калагин И.В.
	диагностики,																				i i					
	управление,																				T					
	контроль																									
28.	Чоппер, банчер,																									Калагин И.В.
	pepper-pot																									
29.	Вакуумная система																									Калагин И.В.
																										Хабаров М.В.
	Диягностика пучка	вп	роц	ecce	уск	орен	ня																			
30.	Основные пробники																									Калагин И.В.
																										Колесов И.В.
31.	Пробник-флажок																									Калагин И.В.
																										Колесов И.В.
32.	Фазовые датчики																									Калагин И.В.

																										Проект
N₂	Наименование						20	11 г	•					2012 г.									Ответственный			
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	
	Вывод пучка																									
33.	Компоновка																									Борисов О.Н.
	системы вывода																									
34.	Дефлектор,																									Борисов О.Н.
	электропитание,																						-			
	управление,																									
	водоохлаждение																									
35.	Магнитный канал,													I I												Тихомиров А.В.
	электропитание,													I I												
	управление													I I												
	водоохлаждение																									
36.	Диагностика пучка																									Калагин И.В.
	вдоль трассы													I I												
	вывода																									
	Вакуумная система	а циј	клот	рон	เล																					
37.	Вакуумная система													I I												Хабаров М.В.
	циклотрона,													I I												Калагин И.В.
	электропитание,																									
	управление																									
38.	Вакуумная камера																									Колесов И.В.
																			<u> </u>							
20	Гранспортировка у	скор	енн	ых	пучк	:0B		1	1	1	1	1	1		1	1	1	1	-	-	1	1	1	-		IC II D
39.	Компоновка													I I												Калагин И.В.
	ооорудования													I					-							
40.	Фокусирующие													I I												Калагин И.В.
	элементы,													I I												
	электропитание,																									
	управление,																									
41	водоохлаждение													I					-							
41.	коммутирующий																									калагин И.В.
	магнит,																									
	электропитание,																									
	управление,																									
	водоохлаждение																									

Проект

N₂	Наименование	2011 г. 2012 г.											Ответственный													
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	
42.	Корректирующие																									Калагин И.В.
	элементы,																									
	электропитание,																									
	управление,																									
	водоохлаждение																									
43.	Элементы																									Калагин И.В.
	диагностики																									
	пучков,																									
	электропитание,																									
	контроль и																									
	управление,																									
	водоохлаждение																									
44.	Вакуумные камеры																									Калагин И.В.
L	-						<u> </u>	<u> </u>																		
45.	Вакуумная система																									Калагин И.В.
	каналов																									Хабаров М.В.
	транспортировки																									
	пучков																									
Сн	стема																									Веревочкин
вод	оохлаждения																									

<u>Cyclotron DC280:</u> beam Intensity from 18 GHz ECR source, efficiency of capture and acceleration and ion beam intensity on targets of physical installations

lon	lon charge	Beam In GHz	tensity from 18 ECR	Efficiency of capture and acceleration	lon beam intensity on targets, pps
		еµА	pps		
20Ne	3	150	3.10 ¹⁴	30%	1.10 ¹⁴
40Ar	7	300	3.10 ¹⁴	30%	1.10 ¹⁴
48 Ca	8	150	1.10 ¹⁴	50%	5.10 ¹³
50Ti	8/9	75	5.10 ¹³	50%	2,5.10 ¹³
54Cr	9	125	8.10 ¹³	50%	4.10 ¹³
58Fe	9/10	125	8.10 ¹³	50%	4.10 ¹³
64Ni	10/11	125	8.10 ¹³	50%	4.10 ¹³
70Zn	11/12	100	5.10 ¹³	50%	2,5.10 ¹³
76Ge	12/13	50	2.10 ¹³	50%	1.10 ¹³

next

<u>CyclotronDC280:</u> beam Intensity from 18 GHz ECR source, efficiency of capture and acceleration and ion beam intensity on targets of physical installations

					, next
lon	lon charge	Beam Inte GHz	ensity from 18 ECR	Efficiency of capture and acceleration	lon beam intensity on targets, pps
		еµА	pps		
86Kr	14/15	150	6.10 ¹³	50%	3.10 ¹³
96Zr	16	10	4.10 ¹²	60%	2,5.10 ¹²
100Mo	16/17	10	3.10 ¹²	60%	2.10 ¹²
124Sn	20/21	10	3.10 ¹²	60%	2.10 ¹²
136Xe	22/23	150	4.10 ¹³	50%	2.10 ¹³
150Nd	25	?		60%	1.10¹² (?)
192Os	32	5	1.10 ¹²	60%	6.10 ¹¹
208Pb	34/35	15	2.10 ¹²	60%	1.10 ¹²
209Bi	34/35	15	2,2.10 ¹²	60%	1.10 ¹²
238 U	39/40	1	1,5.10 ¹¹	60%	1.10 ¹¹

FLNR - 2012

FLNR - 2013

FLNR - 2014

FLNR - 2016(17)

Flat-Тор дуанты

Карамышев О.В.

DC280 Plan Lay-out

U400 cyclotron operation time in 1997-2010

U400 Cyclotron Buncher System

Efficiency of Buncher System (I inj / I acc) for 1 μA - 70%

for 100 μA - 20%

Казаринов Н.Ю.

Рост интенсивности Ar⁸⁺ в поколениях ЕСК источников ЛЯР

Богомолов С.Л.

Прогресс в интенсивности пучков 48Са из ECR источников

Богомолов С.Л.

У400. Интенсивность пучка 48Са на мишени с 1985 по 2011 г. и интерполяция до 2015 года

Modernization of the U400 accelerator

- improvement of the quality and intensity of stable and radioactive beams (48Ca 2.5+3 pµA),
- providing of a smooth variation of energy of ions in the range 0.8 – 27 MeV/A,
- decrease in the consumption of rare isotopes,
- decrease in power consumption

У400. Удельная на расход вещества интенсивность пучка 48Са на мишени с 1985 по 2011 г. и интерполяция до 2015 года

Гикал Б.Н.

Рис.3. Предполагаемая зависимость эффективности синусного банчера от βλ инжектируемого пучка тяжелых ионов в циклотроны ЛЯР при оптимальном расположении банчера

🛦 -экспериментальные данные

∆- ожидаемые точки

Гульбекян Г.Г.

Parameters of U400 and U400R typical ion

	U400			U400R (expect	ed)
Ion	Ion energy [MeV/u]	Output intensity	Ion	Ion energy [MeV/u]	Output intensity
⁴ He ¹⁺	-	-	⁴ He ¹⁺	6.4 ÷ 27	23 pµA **
⁶ He ¹⁺	11	3·10 ⁷ pps	⁶ He ¹⁺	2.8 ÷ 14.4	10 ⁸ pps
⁸ He ¹⁺	7.9	-	⁸ He ¹⁺	1.6 ÷ 8	10 ⁵ pps
¹⁶ O ²⁺	5.7; 7.9	5 pµA	16 O ²⁺	1.6 ÷ 8	19.5 pµA **
$^{18}O^{3+}$	7.8; 10.5; 15.8	4.4 pµA	¹⁶ O ⁴⁺	6.4 ÷ 27	5.8 pµA **
⁴⁰ Ar ⁴⁺	3.8; 5.1 *	1.7 pµA	⁴⁰ Ar ⁴⁺	1 ÷ 5.1	10 pµA
⁴⁸ Ca ⁵⁺	3.7; 5.3 *	1.2 pµA	⁴⁸ Ca ⁶⁺	1.6 ÷ 8	2.5 pµA
⁴⁸ Ca ⁹⁺	8.9; 11; 17.7 *	1 pμA	⁴⁸ Ca ⁷⁺	2.1 ÷ 11	2.1 pµA
⁵⁰ Ti ⁵⁺	3.6; 5.1 *	0.4 pµA	50 Ti 10+	4.1 ÷ 21	1 pµA
⁵⁸ Fe ⁶⁺	3.8; 5.4 *	0.7 pµA	⁵⁸ Fe ⁷⁺	$1.2 \div 7.5$	1 pµA
⁸⁴ Kr ⁸⁺	3.1; 4.4 *	0.3 pµA	⁸⁴ Kr ⁷⁺	0.8 ÷ 3.5	1.4 pµA
$^{136}Xe^{14+}$	3.3; 4.6; 6.9 *	0.08 pµA	¹³² Xe ¹¹⁺	0.8 ÷ 3.5	0.9 pµA
			238 U 27+	$1.5 \div 8$	0.1 pµA

Main magnet model

Рис.2.11. Распределение магнитной индукции (кГс) в центральном продольном сечении. Ток 240кА.

Рис.2.1. Зависимость среднего поля от радиуса для нескольких уровней тока основной обмотки: 85кА, 150кА, 220кА, 240кА, 300кА Иваненко И.А.

SUPERCONDUCTING ECR ION SOURCE at IC-100

DECRIS-SC2 on test bench

Axial injection system of DC280, allowing to inject beams from two ion sources

Физическая модель ЭЦР источника ионов

Траектории частиц в канале

Казаринов Н.Ю.

Распределение давления вдоль линии инжекции

от ECR-источника

Тихомиров А.В.

Распределение давления вдоль линии инжекции

от SCECR-источника

Тихомиров А.В.

Рис. З Временное распределение плотности частиц в медианной плоскости

III. Банчеровка двумя синусными банчерами, работающими на 1-й и 2-й гармониках ускоряющего ВЧ напряжения

Расстояние банчера №1 (1-я гармоника ВЧ,	2 м
синусный или линейный) до медианной	
плоскости ДЦ-280:	
Расстояние банчера №2 (2-я гармоника ВЧ) до	1.8 м
медианной плоскости ДЦ-280:	
Зазор между сетками банчера №1	30 мм
Зазор между сетками банчера №2	15 мм

Наименование		Фазовый
		сдвиг
Амплитуда напряжения на банчере №1	3800 B	0
Амплитуда напряжения на банчере №2	1500 B	65°
Полученная эффективность захвата	71%	
Эффективность с учетом потерь на сетках	65.8 %	

U400R. Median plane level. Second floor.

U400R + SHE factory

U400 ----- U400R Schedule

U400 → U400R hall reconstruction results

	2011	Project
Areas for set-ups	400 м ²	1500 м ²
Areas for electronics	300 м ²	600 м ²
Areas for technical equipment	670 м ²	1300 м ²
Number of radiation isolated halls	1	6

Расчет основного резонатора циклотрона DC280

Карамышев О.В. Франко И.

Flat-Top dee

Flat-Тор дуанты

Вид модели

Карамышев О.В.

Эскизное размещение азимутальных корректирующих обмоток

Иваненко И.А.

Формирование выведенных пучков в циклотроне ДЦ280

Борисов О.Н.

Формирование выведенных пучков в циклотроне ДЦ280

Борисов О.Н.

New Experimental Building with DC280 accelerator complex

Beam transport

Принципиальная схема вакуумной откачки ускорителя ДЦ280

Хабаров М.В.

Хабаров М.В.

Скорость откачки крионасоса VELCO 630:

- По воздуху (азоту) -15000 л/с
- По водяным парам 45000 л/с

Хабаров М.В.

Экспериментальный корпус. Второй этаж

Гульбекян Г.Г. Башевой В.В.

Экспериментальный корпус. Подвальное помещение

Гульбекян Г.Г. Башевой В.В.