

INSTITUTE FOR HIGH ENERGY PHYSICS (IHEP)

Protvino, Moscow Region, 142281, Russia

Light Ions in Accelerator Complex U70 of IHEP

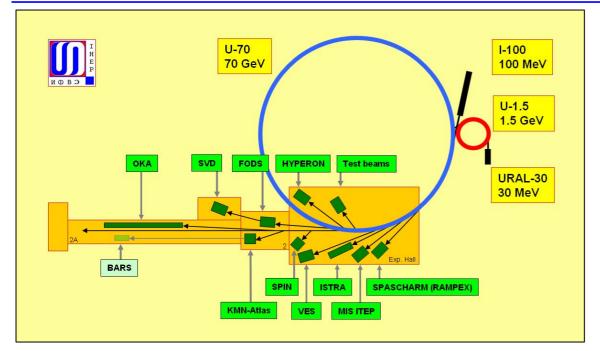
(oral WECCH01)

Sergey Ivanov

XXIII Russian Particle Accelerator Conference

RuPAC-2012

September 24-28, 2012, St-Petersburg, Russia


Outlook

- Generalities
- Prehistory
- Run-by-run progress since 2010
- Conclusion

Emphasis on a progress since RuPAC-2010

Layout

4 machines (since Oct 2007):

- 2 linacs
- 2 synchrotrons

Modes:

proton (default) URAL30-U1.5-U70

• light-ion (d, C) /100(2 of 3)-U1.5-U70

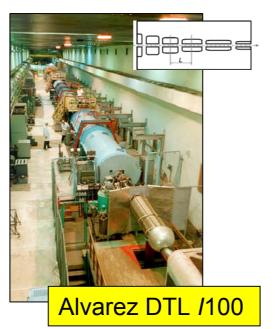
Light-ion:

high energy

• intermediate energy 453-455 MeV/u

to note: OKA (#21), FODS (#22), stretcher (#25)

"AC U-70" in wide sense:


- 4 accelerators,
- BTL network, and
- all experimental facilities

24.1-34.1 GeV/u

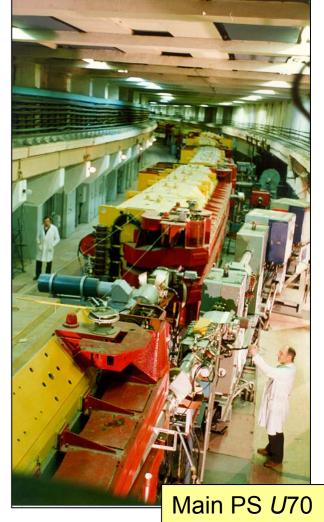
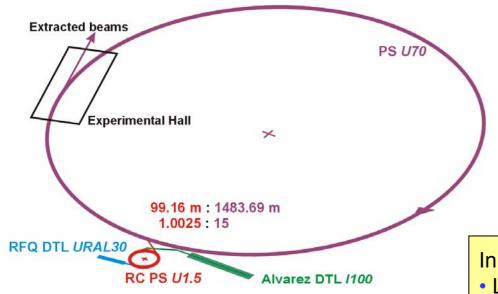


Photo album of machines



General

	<i>U</i> 1.5	<i>U</i> 70		
<i>B</i> ρ, T⋅m	0.8 6.9	6.9 233.4		
f _{RF} , MHz	0.75 2.79	5.52 6.06		
P, Torr	2.10-7	5·10 ⁻⁷		
N, qpp	2-5·10 ¹¹	2-10·10 ¹²		

In a SIS18, SIS100 name convention:

- LIS-233 [T·m]
- LIS-6.9 [T·m]

/100: Alvarez DTL, 0.7—100 (72.7) MeV p; 16.7 MeV/u d, C (@ 4π)

Goal:

- To extend functionality of U70 for applied and fundamental research
- To provide extracted beams of p and light ions (d, C) on a fixed target
- To, thus, convert U70 to an universal hadron accelerator (& storage) ring
- To provide (a.s.a.p.) carbon-beam-therapy compliant beams

Boundary conditions

Boundary conditions:

- To comply with overall layout limitations of the existing machines (densely packed)
- To be non-invasive, never preclude the existing *p*-program
- To be cost-effective, the utmost use of existing capital equipment
- To implement proven technologies

Consequences:

- In a non-SC synchrotron, feasible vacuum $P > 1-5.10^{-8}$ Torr
- Unsuitable optics and no place to assemble collimators to localize beam losses from an intermediate charge-state ion beam
- No place for stripping-foil target assembly for charge-exchange (non-Liouvillean) injection into U70
- No place for any cooling inserts in U70 whatsoever
- Prescribed variation range of rigidity $B\rho$ in lattice, and frequency f_{RF} in RF systems
- Technical limitations in /100 at the 4π -mode imposing 1/3 < q/A < 1/2

Reference ions

Fully stripped (bare) ions, q = ZCharge-to-mass ratio q/A = 1/2

Reference ions:

• ¹H¹⁺ protons, *p*

• ²H¹⁺ deuterons, *d*

• ¹²C⁶⁺ (¹²C⁵⁺) carbon

Why light ions? To be on the safe side w.r.t.:

Coulomb betatron tune shift,

MCS on residual gas,

Ionization losses on residual gas,

• IBS,

• e-capture (recombination) on residual gas,

• e-stripping on residual gas

 $N_{\rm B} \propto (B\rho)^2/\beta A$ $d\epsilon/dt \propto P/(B\rho)^2\beta$

 $d \ln p/dt \propto -Pq/B \rho β^2$

 $\tau \propto (B\rho)^2/N_B\beta q^2$ $\sigma \propto \beta^3 q^2/T^{17/4}$

loss channel closed

Prospects of going to heavier ions will be assessed later with more experimental data at hands

Strategy

Incremental:

ion species

along cascade

p-d-C

[/100 - BTL] - U1.5 - BTL - U70 flat bottom circulation (DC

PSU, RMG) - U70 fixed-field variable-RF acceleration - U70

transition crossing – U70 ramping to flattop field

intensity [qpp]

1 – 1/10 – 1/50 & low-*N pilot p*-beams prior to *d*, *C*-beams

Reference ions $q = Z$, $q/A = 1/2$		/100, 2 cav of 3		U	U1.5		70
		IN	OUT	IN	OUT	IN	OUT
<i>p, pilot</i> beam	β		0.3724		0.9000		0.9999
	<i>B</i> ρ, T⋅m		1.2558		6.8659		233.38
	T, MeV		72.71		1 323.8		69 032
d	β		0.1862		0.7392		0.9996
	<i>B</i> ρ, T⋅m		1.1856		6.8659		233.38
	T, MeV/u		16.691		454.56		34 057
С	β		0.1862		0.7	'414	0.9996
	<i>B</i> ρ, T⋅m		1.1776		6.8	659	233.38
	T, MeV/u		16.6	678	450	6.53	34 063

49 0

236

24.1--34 1

Prehistory @ /100 & U1.5

Alvarez DTL, 2 tanks of 3, 4π -mode, d, C to 16.7 MeV/u BTL I100/U1.5

Reassemble SS#9 of *U*1.5 and update other equipment:

- A wider dipole
- New vacuum chamber
- Away 1 RF cavity (now, a spare unit)
- 177 mrad septum magnet with its PSU
- 23 mrad kicker magnet with its PSU
- The other ancillary equipment
- New RF master oscillator
- Extra capacitive loads to 8 RF cavities
- Improved (though, partially) beam diagnostics, ...

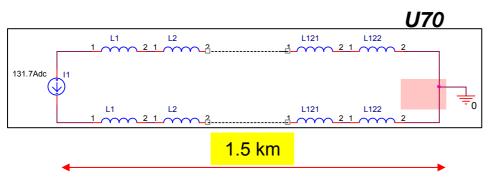
44 m long 4 bends 8 quads 2 V-correctors beam diagnostics

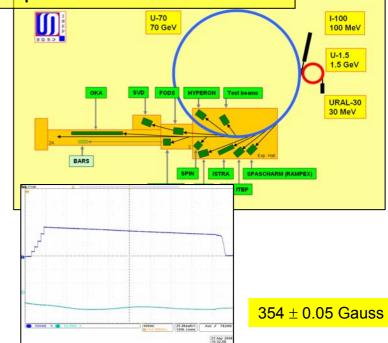
run 2006

10-12.12.07; p; **72.7**-1320 MeV; 3·10¹⁰ ppb; 35% through *U*1.5

run 2007

29-30.03.08; *d*; 16.7- 455 MeV/u; 3·10¹⁰ *d*pb; 34% through *U*1.5, **1st time** in record of service

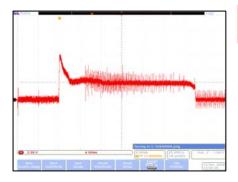


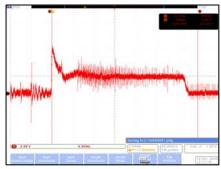

Prehistory @ U70

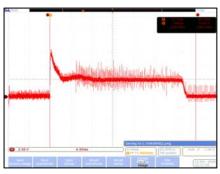
1st MD of 2008: beam test with a stand-alone DC power supply unit for the *U*70 ring magnet

Goal:

- cheap MD runs (1.32 GeV p, 0.45 GeV/u d, C) 130 A 20 kW;
- storage/stretcher ring for light ions 450-5 MeV/u;
- applied & medical applications of intermediate-energy C beams
- an 'ad hoc' 350 m long BTL form U1.5 to the Experimental Hall

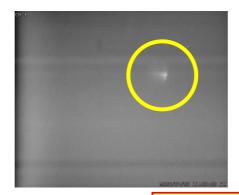






Run 2008-2

*U*1.5

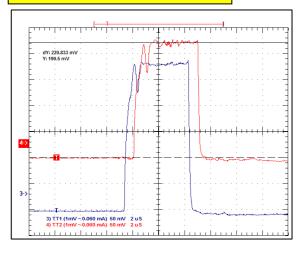


10–12.12.08; *d*; 16.7–455 MeV/u, 2nd time in record of service

U70 Preparatory activity:

- 1. Standalone DC PSU (131.1 A) of ring magnet
- 2. Coasting *p* @1.32 GeV (354 Gauss)
- 3. Injection of *p* under RF off
- 4. Imitation of low-*N d*-bunch, 3·10¹⁰ ppb
- 5. Settling issued DC CT...

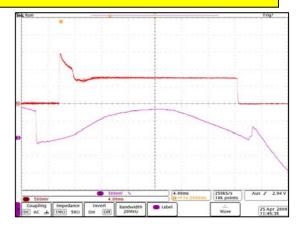
d in U70 after 4 bending magnets of 120, sc screen in SS#10



1st ever light-ion (*d*) beam in the *U*70

Run 2009-1 (1)

/100: d, 16.7 MeV/u (16–17 mA; 40 μs) \rightarrow (15 mA; 5 μs)

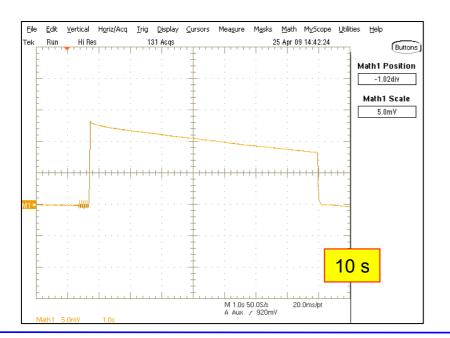


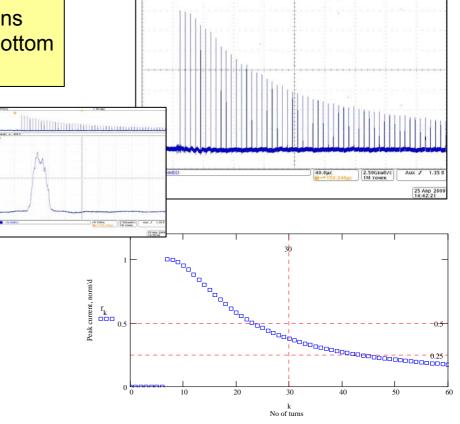
Teletrony TDS 30248 information of the control of t

Reserves in matching BTL //100/U1.5 (beam envelopes)

U1.5: d, 16.7 – 448.6 MeV/u 50% in-out

Improved beam diagnostics, compare with

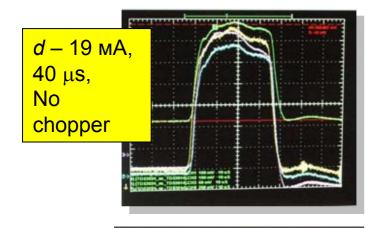


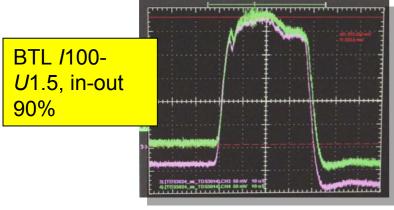


Run 2009-1 (2)

April 25, 2009

U70: d, 448.6 MeV/u coasting 128.38 A DC stand-alone PSU $B = 350.93 \pm 0.01$ Gauss $4.5 \cdot 10^{10} dpp$ $\Delta p/p_0 = \pm 3.6 \cdot 10^{-3}$, $\Delta t_{b0} = 100$ ns 7.5 s long circulation @ flat-bottom life time 30–40 s




Rotation period (d) $6.72 \text{ vs } (p) 5.44 \text{ }\mu\text{s}$

Run 2009-2 (1)

/100: *d*, 16.7 MeV/u Smooth operation Idle time = 0 ca

U1.5: d, 16.7 – 448.6 MeV/u
Problems with RF capture
Low intensity < 10¹⁰ dpb (by
the way, it is C-beam would-be
intensity)
Erequent failures with transfer

Frequent failures with transfer synchronization

Run 2009-2 (2)

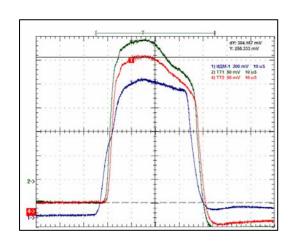
U70: 8 of 40 RF cavities set back to factory defaults

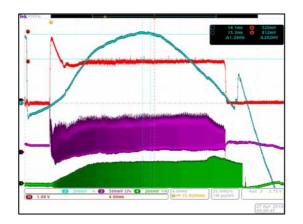
New digital MO

DC stand-alone PSU

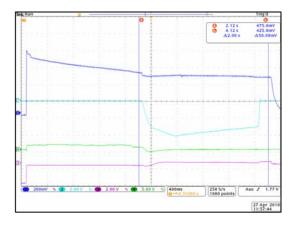
Long lasting circulation of azimuthally uniform and **bunched** *d* beams

PHASOTRON FIXED-FIELD ACCELERATION OF DEUTERONS


RF +10 kHz (smoothly) whence +3.8 MeV per nucleon followed by beam loss at chamber outer wall

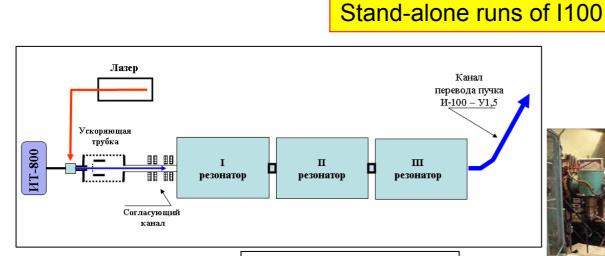


Run 2010-1, end of *d*-beam


Motor Proof of Schools ## Motor of Schools ** One Schoo

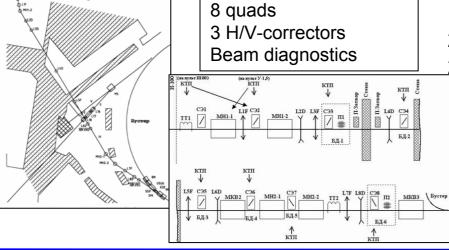
/100: 21 mA *d* pulsed 40 μs 91% in-out in BTL

*U***1.5**: from 1.4·10¹¹ to 8.6·10¹⁰ *d*pb in-out



U70: from 4.10^{10} to $2.5.10^{10}$ *d*pb in-out transition crossing

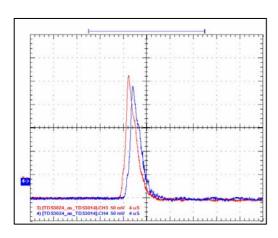
April 27, 2010 Deuterons were accelerated 23.6 GeV/u in the *U*70 (flattop 8441 Gs)



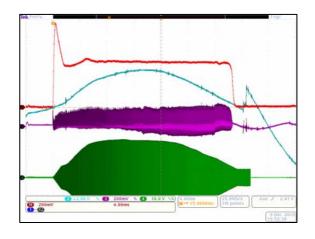
1100 and LSS IS

43 m long 4 dipoles

InfraLight SP, PhIC GPhI RAS, Troitsk 2 modules, CO2, N2 и He, λ=9.6–11 μm 2 Hz, 4.5 J, almost, COTS

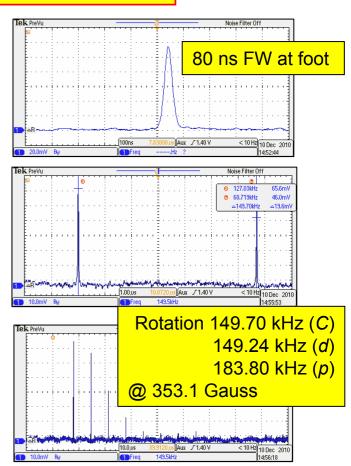


10–12 mA 4000 cycles (former 800), i.e. >8 hr.



Run 2010-2, start of C-beam

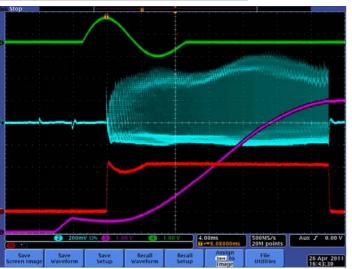
December 8, 2010. Carbon ions were accelerated to 455.4 MeV/u in the *U*1.5 and committed 1st turns around the *U*70 at flat-bottom

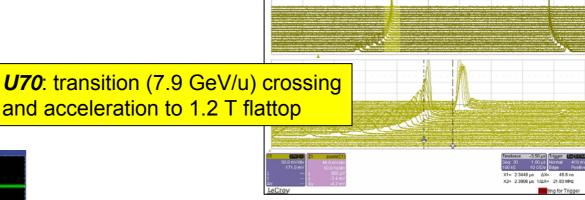


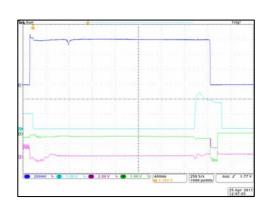
/100: max 21 mA $^{12}C^{6+}$ Pulsed 5 μ s 91% in-out in BTL

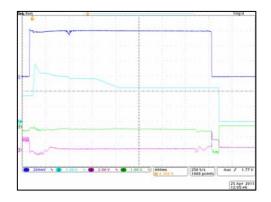
*U***1.5**: from 5.3·10⁹ to 3.5·10⁹ *C*pb, to 65% in-out

U70: 1st turns of C around

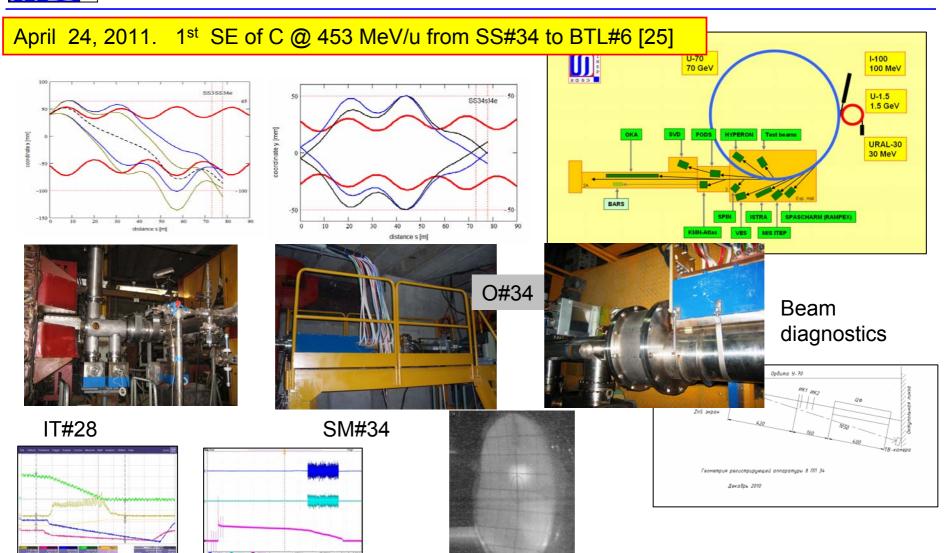


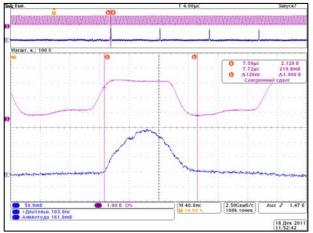

Run 2011-1 (A)

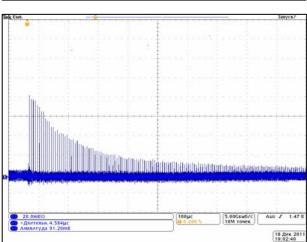

April 24, 2011. Carbon ions were accelerated to top available 34.1 GeV/u in the U70, 5.10^9 ipb

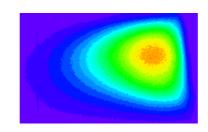

/100: 12-14 max 17 mA ¹²C⁶⁺ Remote rotation of Graphite Block in LSS ion source 800-1000x8 s

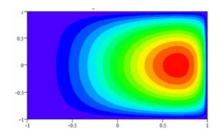
U1.5: smooth & effective operation

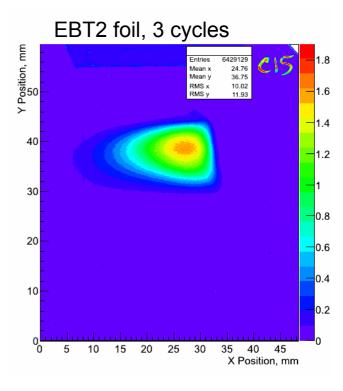




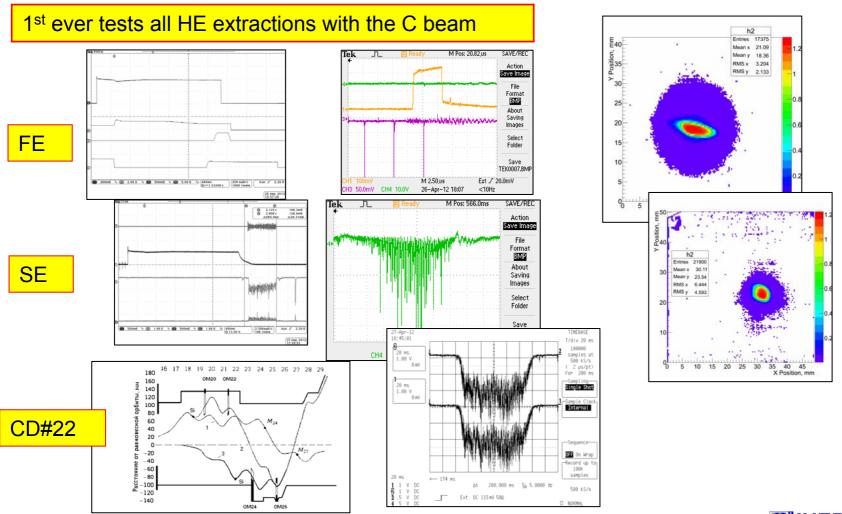

Run 2011-1 (B)




Run 2011-2

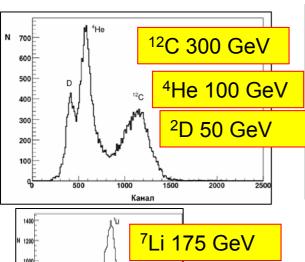


 ± 60 ns. $\pm 1.9 \cdot 10^{-3}$, parabolic bunch

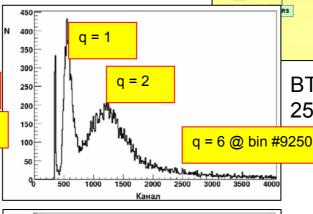


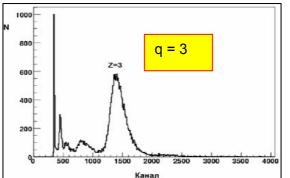
Run 2012-1 (A)

April 24, 2012. C 24.1 GeV/u (flattop 0.859 T) 5·10⁹ ipp (8 s).


Run 2012-1 (B)

I H E P P


April 27, 2012. 1st ever extracted C beam in 190 m BTL#22 = **FRS** & FODS (a Focussing 2-arm Spectrometer) experimental facility


24.1 GeV/u or 300 GeV full E

Hadron calorimeter

Scintillator counters

BTL#22 50 GeV/c (p), 25 Gev/c/u q/A=1/2

HYPERON

70 GeV

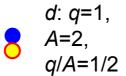
BTL#22 60 GeV/c (p) \pm 1%

a FRS

25.7 Gev/c/u q/A=3/7

100 MeV

U-1.5


1.5 GeV

URAL-30 30 MeV

SPASCHARM (RAMPEX)

Chronology

C: *q*=6, A=12, q/A=1/2

	Deuterons ² H ¹⁺	Carbon ¹² C ⁶⁺
U1.5	16.7-448.6 MeV/u	16.7–455.4 MeV/u
	March 30, 2008	December 08, 2010
U70	23.6 GeV/u	34.1 GeV/u
	April 27, 2010	April 24, 2011
		SE @ 455 MeV/u
		April 24, 2011
		24.1 GeV/u in BTL#22 & FODS
		April 27, 2012

Conclusion

Accelerator complex *U*70 of IHEP-Protvino:

- important (feasibility POP) milestones of light-ion program are accomplished
- *U*70 is on a way towards routine acceleration abd extraction of light-ions (C) to 24-34 GeV per nucleon for high-energy nuclear physics
- now has slow extraction of 450-5 MeV per nucleon of ¹²C⁶⁺ beam at U70 flat-bottom (a beam stretcher mode)
- both U1.5 and U70 are now not only proton but (light-) ion synchrotrons as well
- plans for runs 2012-2 and further foresee operation with HE and IE C ions, assembly of BTL#25, purchasing a new DC PSU, tests of C beam deceleration, etc
- light-ion program of IHEP-Protvino proceeds at a good (affordable) pace