Current Plans for Beam Cooling at FAIR

Markus Steck GSI Darmstadt

with contributions from FZ Jülich

RUPAC 2012, St. Petersburg, Russia

Outline

- Modularized Start Version (MSV) of FAIR
- Collector Ring CR
 Stochastic Cooling for CR
- High Energy Storage Ring HESR

Stochastic Cooling for HESR Electron Cooling for HESR Ion Operation in the HESR

Experimental Storage Ring ESR at GSI
 Beam Dynamics Experiments
 CRYRING @ ESR

Modularized Start Version

RESR and NESR will be added

Collector Ring CR

collection and pre-cooling of pbars (RIBs) isochronous mass measurements of RIBs

High Energy Storage Ring HESR accumulation and storage of antiprotons experiments with 0.8-14.1 GeV antiprotons plans for ion operation added recently

Accumulator Ring RESR accumulation of up to 10¹¹ antiprotons

New Experimental Storage Ring NESR experiments with stable and radioactive ions deceleration of ions and antiprotons

ESR operation will be continued

The Collector Ring CR

 $\begin{array}{ll} \mbox{circumference} & 221.5 \mbox{ m} \\ \mbox{magnetic bending power} & 13 \mbox{ Tm} \\ \mbox{large acceptance } \epsilon_{x,y} = 240 \ (200) \mbox{ mm mrad} \\ \mbox{$\Delta p/p = \pm 3.0 \ (1.5) \%$} \end{array}$

fast stochastic cooling (1-2 GHz) of antiprotons (10 s) and rare isotope beams (1.5 s)

fast bunch rotation at h=1 (U_{rf} =200 kV) adiabatic debunching optimized ring lattice (slip factor) for proper mixing large acceptance magnet system

additional feature: isochronous mass measurements of rare isotope beams

option: upgrade of rf system to 400 kV and stochastic cooling to 1-4 GHz

Ion Optical Modes of the CR

 $\begin{array}{l} \underline{\text{antiprotons}} \\ \mathbf{Q}_{x} = 4.27, \ \mathbf{Q}_{y} = 4.84 \\ \gamma_{t} = 3.85 \\ \eta = -0.011 \\ \Delta p/p = \pm 3.0 \ \% \end{array}$

<u>RIBs</u> $Q_x = 3.19, Q_y = 3.71$ $\gamma_t = 2.82$ $\eta = \pm 0.186$ $\Delta p/p = \pm 1.5 \%$

 $\frac{\text{isochronous}}{Q_x = 2.23, Q_y = 4.64}$ $\gamma_t = 1.67 - 1.84$ $\eta = 0$ $\Delta p/p = \pm 0.5 \%$

G S I

Fast Bunch Rotation in CR

Fast bunch rotation of SIS100 bunch to provide optimum initial parameters for stochastic cooling total rf voltage 200 kV at h=1 reduces the momentum spread ($\pm 3.0 \rightarrow \pm 0.7$ %) after passage of production target

SIS100 bunch after target

Debuncher rf system ordered

M. Steck, RUPAC 2012, St. Petersburg, Russia, 24-28 September 2012

SIS18 bunch compressor cavity prototype for

CR bunch rotation cavity filled with magnetic alloy

voltage 40 kV length 1 m frequency range 1.13 – 1.32 MHz rotation time 1000 μs (pbars) 600 μs (RIBs)

Simulation of Bunch Rotation

Simulation for 3 GeV antiprotons (50 ns bunch length from SIS100)

CR Stochastic Cooling

vacuum tank with actuators for electrode movement including cold heads (20 K) and cooled pre-amplifiers (option)

mounting flange linear motor movable part bellows flange for cold head oumping flange

cooling of rare isotopes (β = 0.83) and antiprotons (β = 0.97)

> Installed in the vacuum tank: electrodes (and as an option preamplifiers) can be cooled to 20 K

CR Stochastic Cooling Prototypes

Electrode prototype (slot line type)

programmable linear actuator

vacuum tank for moving electrodes

optical delay line

milled module body with combiner board

Power Amplifier Prototypes 1-2 GHz

Prototype was tested, but quality is still not according to specifications.

GEMEINSCHAFT

Notch Filter Development

notch depth better 45 dB

Test set-up of notch filter at ESR

frequency deviation \leq 5 \times 10⁻⁵

Simulation of Momentum Cooling in CR

main goal: 10 s cycle time for antiprotons

using the old CERN code cross-checked with T. Katayama

upgrades: more rf power (presently 8 kW) cooling with band 2 – 4 GHz

M. Steck, RUPAC 2012, St. Petersburg, Russia, 24-28 September 2012

g=150 dB (3.2×10⁷); t=10 s

further activities: simulation of RIB cooling preparation of specifications

The High Energy Storage Ring HESR

Storage of antiprotons HESR Parameters

- circumference 574 m
- momentum (energy) range
 1.5 to 15 GeV/c (0.8-14.1 GeV)
- injection of antiprotons from CR accumulation with barrier bucket and stochastic cooling (later accumulation in RESR)
- maximum dipole field: 1.7 T
- dipole field at injection: 0.4 T
- dipole field ramp: 0.025 T/s
- acceleration rate 0.2 (GeV/c)/s
- internal experiment PANDA: dipole field ramp: 0.015 T/s internal hydrogen target
- option: high energy electron cooling

HESR Cooling Systems

COSY (HESR) 2 MeV Electron Cooling

stochastic cooling

M. Steck, RUPAC 2012, St. Petersburg, Russia, 24-28 September 2012

Ultimate HESR Electron Cooling

HESR Stochastic Cooling

Pickup Structures for the HESR Stochastic Cooling System

4-6 GHz slot ring couplers:

- Same aperture (90mm)
- 12 electrodes already formed as 2:1 combiner within the structure
- Sensitivity significantly lower but tolerable because 4-6 GHz system will be used for longitudinal cooling only
- Additional modes still a problem

2-4 GHz slot ring couplers:

- Self-supporting and robust structure with 8 50Ω strip line electrodes
- No plunging system
- One structure for all three cooling planes
- Structure tested in small cryogenic test-tank with real COSY beam. The measured sensitivity was higher than the plunging COSY-lambda/4 structures

Active Control of Optical Notch Filter

Accumulation in the HESR

idea: accumulate pre-cooled antiprotons from CR by combination of barrier buckets and stochastic cooling

Electron Cooling in the HESR

The COSY (HESR) 2 MeV Electron Cooler

Technical Design – Layout BINP

0.025 ... 2 MeV < 10-4

1.00 m

6.390 m

5.7 m

1.8 m

Basic Parameters and Requirements

Energy Range:
High Voltage Stability
Electron Current
Electron Beam Diameter
Cooling section length
Toroid Radius
Variable magnetic field
(cooling section solenoid)
Vacuum at Cooler

Available Overall Length Maximum Height COSY beam Axis above Ground

presentation V.V. Parkhomchuk **J. Dietrich**

JÜLICH

presently: final commissioning at BINP Novosibirsk afterwards: transfer to FZJ and installation in COSY

M. Steck, RUPAC 2012, St. Petersburg, Russia, 24-28 September 2012

Antiproton Cooling: at injection energy and below: 0.8 - 3 GeV

Ion and RIB Cooling: In the energy range 0.2 – 3.5 GeV/u injection at 0.74 GeV/u

applications:

- compensation of target heating and intrabeam scattering
- accumulation of ions

Operation of the HESR with lons

BETACOOL Simulations of **Electron Cooling in the HESR**

BETACOOL-simulation of cooling U⁹²⁺ from CR

740 MeV/u I_e =0.5 A

3 GeV/u I_e=1.0 A

Transverse emittance

Momentum spread

HELMHOLTZ

Lifetime of lons in the HESR

assuming vacuum without bakeout of vacuum system, p ~ 1×10^{-9} mbar and operation of an internal target (target heating compensated by cooling)

even without bakeout of the vacuum system beam lifetimes of several minutes will allow experiments with stored ions

The Existing ESR

Fast injection (stable ions / RIBs) Stochastic cooling (\geq 400 MeV/u) Electron cooling (3 - 430 MeV/u) Laser cooling (C³⁺ 120 MeV/u) Internal gas jet target Acceleration/deceleration (down to 3 MeV/u) Fast extraction (reinjection to SIS / HITRAP) Slow (resonant) extraction **Ultraslow extraction (charge change) Beam accumulation** Multi charge state operation Schottky mass spectrometry Isochronous mode (TOF detector)

The ESR will be a valuable test bed to develop techniques for FAIR

Stochastic Cooling in the ESR

fast pre-cooling of hot fragment beams

energy 400 (-550) MeV/u bandwidth 0.8 GHz (range 0.9-1.7 GHz) $\delta p/p = \pm 0.35 \% \rightarrow \delta p/p = \pm 0.01 \%$ $\epsilon = 10 \times 10^{-6} \text{ m} \rightarrow \epsilon = 2 \times 10^{-6} \text{ m}$

electrodes installed inside magnets

combination of signals from electrodes

power amplifiers for generation of correction kicks

Test of Notch Filter Cooling at the ESR

Optical delay line installed in the ESR for tests of TOF and notch filter cooling

using existing electrodes designed for Palmer cooling

Palmer cooling

Ar¹⁸⁺ 400 MeV/u

M. Steck, RUPAC 2012, St. Petersburg, Russia, 24-28 September 2012

Time-of-Flight cooling

Notch filter cooling

HELMHOLTZ | GEMEINSCHAFT

Proof-of-Principle Experiment in the ESR

using a single bunch of Ar¹⁸⁺ at 400 MeV/u from SIS

mainly to demonstrate the method and benchmark codes, limited by ESR hardware

Bunch Signal from Beam Position Pick-up

PoP-Experiment ESR

Stacking by combination of rf and stochastic cooling with good efficiency and reliability

rf h=1 stacking on unstable fixed point

stacking with fixed barriers

stacking with moving barriers unsuccessful due to limited rf amplitude

simulations in talk by T. Katayama

Deceleration to 4 MeV/u for HITRAP

CRYRING as Low Energy Storage Ring

CRYRING@ESR

Use of CRYRING@ESR

Experiments with decelerated ions and RIBS from the ESR in-ring experiments slow (fixed target) and fast extraction (traps) Stand alone operation with beam injected from ion source +

Stand alone operation with beam injected from ion source + RFQ accelerator developments for FAIR (diagnostics, new control system)

SIS100

and SIS300

S-FRS

p-LINAC SIS18

CR

100 m

options in future:

- transfer secondary beams (antiprotons, RIBs from SuperFRS) from CR/RESR to ESR and CRYRING
- move CRYRING behind RESR
 sharing antiprotons with HESR

Acknowledgements

many thanks to my colleagues from

the Stored Beams Division:

C. Dimopoulou, O. Dolinskyy, O. Gorda, V. Gostishchev, K. Knie, S. Litvinov, F. Nolden, C. Peschke

the Atomic Physics Division: M. Lestinsky, Y. Litvinov, Th. Stöhlker

Forschungszentrum Jülich:

J. Dietrich, R. Maier, D. Prasuhn, R. Stassen, H. Stockhorst

and our longtime mentors:

B. Franzke, T. Katayama, D. Möhl († 24.5.2012)

