Low-energy ion beam storage and eV electron cooling

Andreas Wolf Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany

RUPAC12, St. Petersburg, 24-28 September 2012

Low-energy ion beam storage

Electron cooling and collision physics with molecular ion beams

The Cryogenic Storage Ring project: layout, electron cooling, planned experiments

Dedicated to Dieter Moehl for his early support, his example, and his open mind

Low-energy stored ion beams for atomic, molecular and fundamental particle research

LEAR, AAC, ELENA

down to 5 MeV (and below)

Low-energy antiprotons

Low-energy stored ion beams for atomic, molecular and fundamental particle research

Low-energy stored ion beams for atomic, molecular and fundamental particle research

Low-energy *antiprotons*

Cooler storage rings

LEAR, AAC, ELENA (CERN)

CRYRING (Stockholm→ FAIR) ~5 MeV/u TSR (Heidelberg→ISOLDE/ CERN) S-LSR (ICR Kyoto)

down to 5 MeV (and below)

 \rightarrow ~100 keV/u $(E_{kin} \sim \text{few MeV})$

Electrostatic storage rings

ELISA (Aarhus) KEK & TMU (Tokyo) **DESIREE** (Stockholm) **CSR Heidelberg**

 $E_{\rm kin} \sim 20-100 \; {\rm keV}$ (300 keV, CSR)

Low-energy stored ion beams for atomic, molecular and fundamental particle research

Ultrahigh vacuum

Beam lifetime seconds to minutes (typical)

Hot interstellar gas

Gas heated by active galactic nucleus (supermassive black hole)

> X-ray view (blue) of galaxy M106

> > Palomar observatory A. S. Wilson et al.

Interstellar molecular clouds

density ~10⁴ cm⁻³ temperature ~10 K

Star forming regions

Milky Way visible Cerro Tololo S. Kohle

Interstellar molecular clouds

lon chemistry density ~10⁴ cm⁻³ temperature ~10 K

Star forming regions

Milky Way visible Cerro Tololo S. Kohle

> CO radio line T. Dame Harvard Smithsonian

Interstellar ion chemistry

Reaction chains in interstellar clouds

About 175 observed interstellar molecules (May 2012)
Heavy species: CH₃CH₂OH, sugar (glycoaldehyde), ...

- lons: CH^+ CO^+ SO^+ CF^+ HCO^+, COH^+ HCS^+ HCS^+ $HCNH^+$ $HCNH^+$ $HCNH^+$ HCH^+ SH^+ $HCI^+...(2012)$

G. Rothfuss, S. Byers, F. Haase and NOAO/AURA/NSF

IC 5067 Star forming region "Pelican nebula"

Interstellar ion chemistry

Reaction chains in interstellar clouds

- About 175 observed interstellar molecules (May 2012)
- Heavy species: CH₃CH₂OH, sugar (glycoaldehyde), ...

- lons: CH^+ CO^+ SO^+ CF^+ H_3^+ HCO^+, COH^+ HCS^+ $CN^ HCNH^+$ $HCNH^+$ (2010) H_2COH^+ SH^+ $HCI^+...(2012)$

IC 5067 Star forming region "Pelican nebula"

G. Rothfuss, S. Byers, F. Haase and NOAO/AURA/NSF

Interstellar clouds, star-forming regions, protoplanetary disks Observed by infrared and radio spectroscopy

Molecular breakup by cold electrons

High-resolution electron target

- Beam transport down to < 1 eV

D. A. Orlov et al., J. Appl. Phys. 106, 054907 (2009)

D. A. Orlov, C. Krantz, A. Shornikov with 10 µA current (0.01 T guiding field) Collab. with Inst. f. Semiconductor Phys., Novosibirsk, A. N. Terekhov

High-resolution electron target

D. A. Orlov et al., J. Appl. Phys. 106, 054907 (2009)

D. A. Orlov, C. Krantz, A. Shornikov WITH TO PA C Collab. with Inst. f. Semiconductor Phys., Novosibirsk, A. N. Terekhov

- Magnetic expansion (~0.4 T \rightarrow 0.02 T) yields 0.5...1 meV electron temperature (~5...10 K)
 - Cathode lifetime typ. 24 h
 - ~4 cathodes under vacuum in closed-cycle operation since >2 years
 - Beam transport down to < 1 eV with 10 µA current (0.01 T guiding field)

Polyatomic ions at TSR

Fragmentation pathways of dissociative recombination

Molecules built up by ion chemistry

Polyatomic ions at TSR

Fragmentation pathways of dissociative recombination

Cryogenic electrostatic storage ring CSR

Stored ion beams with keV energies of large compounds, clusters (cations, anions),

Cryogenic storage ring CSR

CSR cryo and vacuum tests – the CTF

CTF: lon beam trap with CSR cryogenic (2 K) and vacuum concept

Storage of ~ 5 keV ion beam

Typical storage lifetime in room-temperature devices: т ~ 5 s (gas density few 10⁵ cm⁻³)

CSR cryo and vacuum tests – the CTF

CTF: lon beam trap with CSR cryogenic (2 K) and vacuum concept

CSR cryo and vacuum tests – the CTF

CTF: lon beam trap with CSR cryogenic (2 K) and vacuum concept

Max-Rlanck-Institut für Kernphysik

Max-Planck Institute for Nuclear Physics. Heidelberg, Germany

Stored and Cooled Ions (K. Blaum)

Atomic and molecular quantum dynamics

Atomic and molecular physics

Electron target

Photocathode

- **A**. W. O. Novotný (**) H. Buhr (*) C. Krantz A. Petrignani (*) **D. A. Orlov (*)** A. Becker K. Spruck
- S. Vogel **Bian Yang** <mark>A. Shornikov (*</mark>) D. Bing (*) M. Mendes (*)
- J. Stützel

Collaborations

O. Novotný ()**

W. D. Geppert

Univ. Stockholm

Weizmann Institute of Science Rehovot. Israel

H. Buhr (*) D. Schwalm O. Heber M. Rappaport Univ. Giessen, Germany S. Schippers K. Spruck (**) A Müller Columbia Univ., NYC D. Savin

ĬAM P

D. Zajfman

D. Shafir (*)

Univ. Louvain-La-Neuve, Belgium X. Urbain

Microcalorimeter ion detector

Kirchhoff Inst., Univ. Heidelberg A. Fleischmann C. Enss

Stored and cooled ion instrumentation

TSR and accelerator

M. Grieser **R. Repnow** R. von Hahn

www.mpi-hd.mpg.de/blaum/molecular-qd storage-rings

KERNPHYSIK

MAX-PLANCK-INSTITUT FÜR

Max-Planck Institute for Nuclear Physics, Heidelberg, Germany

Stored and Cooled Ions (K. Blaum)

CSR and CTF I

- K. Blaum R. von Hahn M. Grieser R. Repnow M. Lange
- M. Lange S. George

- F. Fellenberger
- F. Berg
- S. Menk
- M. Froese (*)
- F. Laux (*)

Photocathode electron beams

and cooled molecular beams

J. Varju (̀*́)

www.mpi-hd.mpg.de/blaum/molecular-qd storage-rings

- C. Krantz S. Vogel A. Shornikov (*) D. A. Orlov (*)
 - J. Ullrich, K.-U. Kühnel, J. R. Crespo Lopéz-Urrutia, C. D. Schröter

Collaborations

Weizmann Institute of Science Rehovot, Israel

- Y. Toker O. Heber
- M. Rappaort D. Schwalm

D. Zajfman

Germany L. Schweikhard C. Breitenfeldt

ISP Novosibirsk, Russia

Louvain-la-Neuve, Belgium

X. Urbain A. Terekhov

Horizontal Acceptance of the CSR (p 300 keV)

ECOOL OFF

CSR Horizontal Phase Space Ellipse E_i=300 keV

M. Grieser, H. Fadil

Horizontal acceptance and quadrupole gradient

Orbit calculations with real fields: ion lost for x>4cm

 \Rightarrow tune change \Rightarrow ions lost due to resonances

centre straight section ≈ beam size in quadrupole

M. Grieser

CSR construction

Max-Rlanck-Institut für Kornphysik

CSR construction

Ion optics

CSR ion optics and deflection cell

Multistrip silicon detector for fast-beam imaging

Multistrip silicon detector for fast-beam imaging

Energy-sensitive MUlti-strip detector

Energy readout → fragment channel identification

e.g.:	D ₃ O⁺ + e	$\rightarrow D_2O + D$
	-	$\rightarrow OD + D_2$
		\rightarrow OD + D + D
		→

EMU imaging system @ TSR

H. Buhr et al., Phys. Rev. A 81, 062702 (2010) MPIK, Heidelberg + Weizmann Institute, Rehovot

Low-energy photocathode electron beam

A. Shornikov, C. Krantz

Merging section for electrostatic rings

A. Shornikov et al., COOL09, THM2MCCO03

Electron cooling of molecular ions

Electron cooling of molecular ions

