Application of cooling methods at NICA project

G.Trubnikov on behalf of team

RUPAC-12 conference St.Petersburg, 25 September 2012

Booster synchrotron

G.Trubnikov, JINR

Booster electron cooling system

Ions	$197 Au^{31+(65+)}$
Booster circumference, m	211.2
Injection/extraction energy, MeV/u	3/600
Max. dipole field, T	1.8
Ion number	2×10 ⁹
Beta functions in cooling section, m	10-6 / 6-10
Dispersion in cooling section, m	0.6
Maximum electron energy, keV	50.0
Electron beam current, A	$0 \div 1.0$
Cooler overall length, m	5.7
Eff. length of the cooling section, m	2.5
Magnetic field in the e-cooler, kG	1.5
Magnetic field inhomogeneity in the cooling section, $\Delta B/B$	1.10-4
Electron beam radius, cm	2.5
Trans.electron temperature, meV	200
(ming). electron temperature, meV	0.5
Cooling time, s (I_e=0.05A)	0.4
Residual gas pressure, Torr	10-11

Zero dispersion in the large stright section

Simulation of cooling process with BETACOOL

Evolution of the bunched ion beam parameters during the cooling process (lon energy = 3 MeV/u).

Horizontal and vertical emittances

ion momentum spread

Phase space diagrams

Initial parameters of the cooling

lon energy, MeV	3
lon kind	¹⁹⁷ Au ³¹⁺
Particle number	2×10 ⁹
Initial Tr_emittance,	1.5
π mm mrad (rms)	
Initial momentum spread	1×10 ⁻³
RF voltage, kV	10
Electron beam current, A	0.05
Electron beam temp. long/trans, meV	200 / 0.5

Transverse emittance evolution in the collider injection chain

From HILac $6\sigma \le 10 \pi \cdot \text{mm} \cdot \text{mrad}$ (upper limit for vertical emittance)

Horizontal Booster acceptance ~ 120 π ·mm·mrad (upper limit for the horizontal 6σ emittance in the case of multiturn injection)

In Booster: Kinematic decrease + Electron cooling (if necessary)

At 65 MeV/u rms $\varepsilon_h \le 4.21 \ \pi \cdot \text{mm} \cdot \text{mrad} \ \varepsilon_v \le 0.35 \ \pi \cdot \text{mm} \cdot \text{mrad}$

At 600 MeV/u (without cooling) rms $\varepsilon h \le 1.23 \pi \cdot mm \cdot mrad \varepsilon v \le 0.102 \pi \cdot mm \cdot mrad$

Increase in transfer line from Booster to Nuclotron:

-Stripper

- -Coupling
- -Mismatch

If $\varepsilon_h >> \varepsilon_v$, $\varepsilon_h \sim \text{constant}$, ε_v increases by about 3 times

At injection into Nuclotron rms $\epsilon_h \le 1.23 \ \pi \cdot \text{mm} \cdot \text{mrad} \ \epsilon_v \le 0.3 \ \pi \cdot \text{mm} \cdot \text{mrad}$

Collider parameters

Ring circumference, m		503,04	
Number of bunches		23	
Rms bunch length, m		0.6	
Beta-function in the IP, m		0.35	
Ring acceptance (FF lenses)	40	π mm mra	ıd
Long. acceptance, dp/p	±0.010		
Gamma-transition, γ_{tr}	7.091		
Ion energy, GeV/u	1.0	3.0	4.5
Ion number per bunch	$2.75 \cdot 10^{8}$	$2.4 \cdot 10^9$	$2.2 \cdot 10^{9}$
Rms momentum spread, 10 ⁻³	0.62	1.25	1.65
Rms beam emittance, h/v,	1.1/	1.1/	1.1/
(unnormalized), π ·mm·mrad	1.01	0.89	0.76
Luminosity, cm ⁻² s ⁻¹	1.1e25	1e27	1e27
IBS growth time, sec	186	702	2540

Peak luminosity can be estimated as:

The collision repetition rate: $F_{coll} = \frac{\beta c}{l_{bb}}, \quad l_{bb} = \frac{C_{Ring}}{n_{bunch}}$

Hour-glass effect ~ 1 (because in our case $\sigma_s << \beta$):

$$f_{HG}\left(\frac{\sigma_s}{\beta^*}\right) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{\exp(-u^2) du}{\left[1 + \left(\frac{u\sigma_s}{\beta^*}\right)^2\right]}$$

Maximum luminosity is reached when the bunch phase volume corresponds to the ring acceptance

Collider parameters

The problems we have met and the solutions

Role of beam cooling

- 1. Beam stacking using BB system:
 - Injection repetition is 10 sec, the cooling times has to be short enough
- 2. Longitudinal cooling during beam bunching
- 3. During experiment:
 - in IBS dominated mode Suppression of IBS;
 - in SC dominated mode providing optimum phase volume

Beam stacking with BB system and cooling

E > 3 GeV/u: stacking with Stochastic cooling The cooling time is proportional to the bunching factor for "almost" coasting beam in BB the cooling times ~ 10 sec (T.Katayama previous MAC)

E < 3 GeV/u: Stacking with Electron cooling Problem – cooling time strongly depends on energy and does not depend on bunching factor

The cooling power sufficient for experiment can be insufficient for effective stacking

T.Katayama, October 2011, 3.5 GeV/u

Beam stacking with electron cooling

Stacking efficiency (A.Smirnov)

2.5 GeV/u

100

120

140

60

____ 50 160

2e+09

0

20

40

60

80

Time (sec)

Stacking with electron cooling and beam bunching

Effective stacking can be realized below ~ 2 GeV/u Possible solution:

- Stacking at 1 GeV/u with efficiency closed to 100%
- Slow acceleration to the experiment energy

At constant longitudinal emittance ($\sigma_p \times \sigma_s = \text{const}$) minimum threshold current of microwave instability corresponds to coasting beam $I_{\text{th}} \sim \sigma_p^2$ the momentum spread is inversely proportional to bunching factor

Formation of required long emittance by a few steps:

- At storage of coasting beam formation σ_p required for the stability (long emit. is larger than required at collisions by about bunching factor ~ 13)

- Bunching at 24 harmonics + cooling of long emittance by about 6 times, Formation of the bunch of about 1.2 m, required to recapture in h=72

- Bunching + cooling at h = 72,

formation of required bunch length and momentum spread

IBS calculations

IBS calculations

condition gives for the acceptable upper frequency of the band the value of about 20 GHz (at the momentum spread equal to the ring dynamic aperture ±0.01). The luminosity of 1.10²⁷ cm⁻²s⁻¹ corresponds to about 2.3.10⁹ ions per bunch, the effective ion number is about 8.10¹¹. To provide required cooling time the cooling bandwidth can be chosen from 3 to 6 GHz

"Slice" overlapping (by D.Moehl)

```
3..6GHz: Tsc ~ 0,5Tibs
2..4 GHz: Tsc ~ Tibs
```

Electron cooling

Beam emittances @ equillibrium state. Rates ($\tau _ \epsilon_x = \tau _ \epsilon_y = \tau _ \sigma_P$) - from IBS calculations for lattice.

Luminosity is fitted to 1e27, $\epsilon_{\rm x}$ is fitted to 1.1 π mm mrad

$$\hat{F} = -\hat{V} \frac{4Z^2 e^4 n_e L_p}{m} \frac{1}{\left(V^2 + \Delta_{e,eff}^2\right)^{3/2}} \quad L_p = \ln\left(\frac{\rho_{\max} + \rho_{\min} + \rho_{\perp}}{\rho_{\min} + \rho_{\perp}}\right) \quad \rho_{\min} = \frac{Ze^2}{m} \frac{1}{V^2 + \Delta_{e,eff}^2} \\ \rho_{\max} = \frac{V_i}{1/\tau_{flight} + \omega_p} \quad \Delta_{e\,eff} = 0,0046 \text{ eV} \\ \text{Angular spread [rad]} = 2e-5$$

Parkhomchuk model. $\beta_x = \beta_y \approx 20 \text{ m}$ @ cooling section, L = 6m, B=1T (required mainly to provide adiabatic transport of the electron beam from HV source to the cooling section), I_electron = 0,5A. T_tr_e - chosen at all energies to the value in order to have τ_{life} (due_to_recombination)>=10 hours (36000 seconds: recombination rate limit = 2,7E-5. Radius_electron_beam chosen to have T_ecool = min (same at all energies)

The cooling rate is determined mainly by longitudinal electron temperature (that is dominated by HV generator stability) and logarithmically depends on the transverse one

Electron cooling

Summary final

HV electron cooling system

HV electron cooling system

Electron beam energy, MeV	0,5 ÷ 2,5
Collector potential vs cathode, kV	0,5 ÷ 2,0
Electron beam current	0.1 ÷ 1,0
Electron beam current losses, м А	< 0.1
Radiated power from cathodes,, W	2×100
Max. rad. power at collectors, kW	2×2
Electron cathode diameter, cm	3,0
Long. Magnetic field, T	0,1 ÷ 2,0
Electron energy stability	1×10 ⁻⁴

HV Generator prototype U=250 kV, I=1mA

G.Trubnikov, JINR

SC experiment at Nuclotron

Circumference, m	251.5
Ions	up to A=56
Energy, GeV	3.5
Rev.frequency, MHz	1.2
Vacuum, Torr	10^-10
Intensity	10^11(p)-
	10^9(C12)
Ring slippage factor	0,0322
-dp/p	10^-3
(NICA)	

Stochastic cooling system for Nuclotron

Nuclotron-NICA

Stochastic cooling system prototype at Nuclotron

Slot-coupler structures, manufactured at IKP FZJ

G.Trubnikov, JINR

Experimental set-up:

Experimental results:

Energy range 0.5-4.0 GeV/u

Conclusions

- 1. Electron cooling at Booster is required to have wide machine possibilities at beam injection from HILAC and to perform applied research
- 2. Stochastic cooling at NICA collider is sufficient for IBS suppression and for beam stacking also
- 2. Electron cooling can be used for cooling at experiment in the total energy range
- 3. Electron cooling can provide effective stacking at small energy only
- 4. At energy larger than 3 GeV/u the experiment can be provided using electron cooling as well as stochastic, or combination of both methods
- At energy below 3 GeV/u the experiment is provided using electron cooling. Possibility to increase of luminosity at minimum energy is related with space charge dominated mode
- 6. Slow acceleration of the beam is presumed for the case when effective stacking (or injection) is complicated at the experiment energy

Thank you for your attention !

Many thanks to my colleagues for fruitful discussions and help: R.Stassen, T.Katayama, L.Thorndal, D.Mohl, A.Sidorin, N.Shurkhno, I.Meshkov, S.Kostromin, O.Kozlov, A.Smirnov, H.Khodzhibagiyan, V.Volkov, S.Romanov, E.Gorbachev, A.Butenko, V.Seleznev, and others