Approach to the Low Temperature State oriented for Crystalline Beam

Akira Noda

Institute for Chemical Research, Kyoto University

at RuPAC 2012 Saint-Petersburg, Russia 25, September, 2012

25, September, 2012

Contents

1. Introduction of S-LSR at ICR, Kyoto

Advanced Compact Accelerator Development and S-LSR →Try to combine laser plasma acceleration with conventional RF accelerator Technology

- 2. Our Research at S-LSR
- a) Electron Beam Cooling of 7 MeV proton
 - 1D Ordering of Proton by <u>Electron Cooling</u>
 - Formation of Short Bunch Beam→Vertical Beam Course for Bio-medical Irradiation
- **b)** Laser Cooling
 - Longitudinal Laser Cooling of Coasting Beam
 - Indirect Transverse Laser Cooling by SBRC (Synchro-Betatron Resonance

Coupling) →**Increase** of its cooling efficiency by <u>Scraping</u>

3. Perspective for Future Research

Accelerator Facility at ICR, Kyoto Univ.

SCRIT Installed into S-LSR

SCRIT(self-confining radio active isotope ion target) An "ion trapping" phenomenon in the electron storage ring was successfully utilized for the first time to form the target for electron scattering.

M. Wakasugi et al., Phys. Rev. Lett. 100, 164801 (2008) T. Suda et al., Phys. Rev. Lett. 102 102501 (2009)

Downsizing is possible by combination of Laser Ion Source and High Magnetic Field Pulse Synchrotron

25, September, 2012

Our Research at S-LSR on Beam Cooling

- Compact Cooler Ring S-LSR
 - Circumference 22.56m
 - Straight Section Length
 1.86m
- Electron-Cooling
 - Protons 7MeV (Ee=3.8keV)
 - Hot proton beam
 - Approach to 1D-Ordering
 - Short Bunch Formation
- Laser Cooling
 - ${}^{24}Mg^{+} 40 \text{ keV} (\lambda = 282 \text{ nm})$
 - Transverse Laser Cooling
 by "Synchro-Betatron
 Resonance Coupling" (SBRC)

25, September, 2012

Akira Noda at RuPAC 2012 in Saint-Petersburg

In operation since October, 2005

Main Parameters of S-LSR

Circumference	22.557 m
Average radius	3.59 m
Length of straight section	1.86 m
Number of periods	6
Betatron Tune	
Crystalline Mode	Normal Operation Mode
1.45 (H), 1.44 (V)	1.645 (H), 1.206 (V) :EC, LC()
	2.072 (H), 1.115 (V) :LC(\pm &)
Bending Magnet	(H-type)
Maximum field	0.95 T
Curvature radius	1.05 m
Gap height	70 mm
Pole end cut	Rogowski cut+Field clamp
Deflection Angle	60°
Weight	4.5 tons
Ouadrupole Magnet	
Core Length	0.20 m
Bore radius	70 mm
Maximum field gradient	5 T/m
25, September, 2012 Akira Noda at Rul	PAC 2012 in Saint-Petersburg

Electron Beam Cooling of Hot Ion Beam

by H. Fadil

12

Electron Cooling of Hot Carbon Beam at TSR

TSR Experiment parameters

I on speci es	C ⁶⁺ 73.3	[MeV]
Electron density	2. 4x10 ⁷	[cm ⁻³]
cooler length	1. 2	[m]
Magnetic field	300	[G]
Induction voltage	0 ~ 0.4	[V]

Ion beam energy sweeping scheme

Electron beam energy sweeping scheme

0.1%

25, September, 2012

Electron Cooler installed in S-LSR

13

Electron Cooling of Hot Proton Beam at S-LSR

1D Ordering of 7 MeV Proton by <u>Electron Cooling</u>

15

ESR at GSI, by M. Steck

Figure 2. Experimental momentum spreads from Schottky signals vs. number of stored ions in the ESR for electron cooled U⁹²⁺ ions at 240 MeV/u. a_{WS} indicates the Wigner-Seitz radius of eq.(3). (after ref.⁹)

ESR at GSI, by M. Steck

25, September, 2012

Figure 3. Beam radius measured with a beam scraper vs. number of stored ions in the ESR for electron cooled Au^{79+} ions at 290 MeV/u (from ref. ¹⁰).

CRYRING at Stockholm, by H. Danared

Fig. 5: Relative momentum spread as a function of particle number for the lowest seven electron densities represented in Fig. 2. The density increases from the upper left to the lower right. For each density, a line is fitted to the data points. A line is also drawn through the points corresponding to the transition to the ordered state. (The use of different symbols is just to help identifying which points belong to same electron density.)

16

Simulation with Betacool predicts 1D ordering of 7 MeV proton at S-LSR -particle number of 3000-

$$\Gamma_2 \equiv \frac{Z^2 e^2}{4\pi \epsilon_0 \sigma_\perp k_B T_{\parallel}}$$

Collaboration with JINR, Dubna by Prof. I. Meshkov and Dr. A. Smirnov et al.

Phase Transition to 1D Ordered State

25, September, 2012

Akira Noda at RuPAC 2012 in Saint-Petersburg

18

Reflection Probability of Ions made Phase Transition

25, September, 2012

Creation of Ultra-short Bunch Beam and its fast extraction →Verical Irradiation System

Fast Extraction System at S-LSR

25, September,野田2章極限粒子区odムシスポジウムのが理研Sat大河内記念本rgル

Bunch Rotation of 7 MeV Proton

RF field (800 V) is applied to coasting beam after electron cooling and is extracted when the beam is rotated ~90°.

 $\mathbf{22}$

Shortest Pulse Created by Phase Rotation

25, September, 2012

Kicker Magnet
0.027T, 80ns riseShort bunch duration of 3.1 ns (2σ)
7 MeV proton with Intensity 1.4x 108
Extraction efficiency is estimated ~20%
due to filamentation.

Improvement of extraction efficiency by application saw tooth RF wave form is expected.

Observation Point by FCT (Fast Current Transformer) Akira Noda at RuPAC 2012 in Saint-Petersburg

Short Pulse Formation of 7 MeV Proton by Bunching Method at S-LSR

Simultaneous application of RF voltage and electron cooling has resulted in shortest bunch of the duration of ~15.7 ns limited by space charge force. Extraction efficiency is ~100%.

24

25, September,野田2章極限粒子区odムシスポジウムのが理研Sai大河内記念本rgル

DNA Double Strand Break by Laser-produced Proton beam

A. Yogo et al., APL, 94, 181502 (2009)

FIG. 1. (Color) (a) A schematic drawing of experimental setup. (b) An image of cancer cells taken by a microscope. (c) A spatial distribution of protons detected by CR-39 in a single laser shot. Each red point represents a single proton bombardment. The screen size is set to be same as that in the frame (b).

Pulse Width 15ns, 20 Gy

FIG. 3. (Color) γ -H2AX focus formation induced by irradiation of laseraccelerated protons with 20 Gy. γ -H2AX and nucleus are stained with anti- γ -H2AX antibody (green) and DAPI (blue).

• Laser Cooling of ²⁴Mg⁺ Ion Beam

26

25, September,野田2章極限粒子区odムシスポジウムのが理研Sai大河内記念本rgル

²⁴Mg⁺ Ion Source (40 keV)

Excited States of Mg Ion

28

25, September,野田2章極限粒子区odムシスポジウムの於理研Sai大河内記念本rgル

Principle of Laser Cooling (Longitudinal)

29

Block Diagram of Laser Cooling at S-LSR

30

Laser System for Cooling

31

Typical Laser Parameters

Output of Solid State Laser	8.1 W
Output of Dye Laser	645 mW
Output of Second Harmonics Generator	47 mW
Wavelength	~279 nm
Saturation Intensity	254 mW/cm ²

32

Laser Cooling Section of S-LSR

Induction Accelerator

Window for Laser port

Helical Schottky Pick-up for 7 MeV proton is installed here.

33

25, September, 2012

Overlapping of Ion and Laser Beams

Post Acceleration Tube (PAT) -Energy Sweep is applied for Distribution Measurement-

Specification of PAT

Inner Diameter\$\phi35\$ mmOuter Diameter\$\phi38\$ mmLength44 mmObservation Hole\$\ph10\$ mm

25, September, 2012

By T. Ishikawa

35

Laser Cooling of Coasting Beam at S-LSR

25, September, 2012

Akira Noda at RuPAC 2012 in Saint-Petersburg

36
Bunched Beam Cooling

15, Septémble:1200912

Akira Noda at RuPAC 2012 in Saint-Petersburg

37

M. Nakao, Master Thesis, Kyoto University (2008)

38.38

Result of Bunched Beam Cooling

N=6x10⁶, RF Freq=125.96kHz(h=5), Voltage=3.06V

25, September, 2012

Observation of Transverse Beam Size by CCD Camera

Cooled CCD Camera (Hamamatsu Photonics C7190-11W)

25, September, 2012

Akira Noda at RuPAC 2012 in Saint-Petersburg

39

Ion Observation with Emitted Light

Laser Profile

Fluorescent light from the ion bean

40

1.8 mm

25, September, 2012

Measurement of Fractional Part of Betatron Tune through Transfer Function Measurement Beam Transfer Function→Fractional Part of Betatron Tune

(Integer part is obtained from MAD Calculation)

25, September, 2012

Transverse Laser Cooling by Synchro-Betatron Coupling $(v_{\rm H}, v_{\rm V}) = (2.068, 1.105)$ 5 1.2 1 4 Momentum Spread (10) (x10⁻⁴) CCD Image Size (10) [mm] 0.8 3 0.6 2 0.4 0.2 Momentum Spread by PAT Beam Size on CCD Camera 0 🏝 0 0.02 0.04 0.06 0.08 0.1 0.12 0 Synchrotron Tune

25, September, 2012

Time Variation of Transverse Beam Size for Various Synchrotron Tune

(Beam Intensity 1 x 10⁷)

 $(v_{\rm H}, v_{\rm V}) = (2.068, 1.105)$

12

25, September, 2012

Controlled Scraping to Suppress IBS Effects

By M. Bussmann U. Schramm and D. Habs et al., SPARC07

He Zhengqi et al., to be published

Scraping System for Intensity Reduction and Beam Size Measurement

45

Relation between Scraper 1 Position and Beam Intensity

Example of Horizontal Beam Profile Measured by a Horizontal Scraper 2

Time Variation of the Horizontal Beam Size (Beam Intensity 9 x 10⁴)

25, September, 2012

Beam Intensity Dependence of Horizontal Beam Size

25, September, 2012

Akira Noda at RuPAC 2012 in Saint-Petersburg

49

Beam Intensity Dependence of Vertical Beam Size

25, September, 2012 Akira Noda at RuPAC 2012 in Saint-Petersburg

-50

Comparison with Former Data

Year	Method	Ion	Kinetic Energy	Intensity	Т	T _H	T _V	Ref
1996	IBS	⁹ Be ⁺	7.3 MeV	2.0 x 10 ⁷	15	4000	500	[15]
1998	Dispersive cooling	⁹ Be ⁺	7.3 MeV	1.0 x 10⁷	few tens	~500#	~150#	[17]
2001	RFQ	$^{24}Mg^+$	1 eV	1.8 x 10⁴	<3 m	T _⊥ <0.4		[25]
2008	IBS	²⁴ Mg ⁺	40 keV	1.0 x 10⁷	11	-	500	[18]
2009	W SBRC	²⁴ Mg ⁺	40 keV	1.0 x 10⁷	27	220\$		[20]
2009	WO SBRC	²⁴ Mg ⁺	40 keV	1.0 x 10⁷	16	_%		[20]
2012	W SBRC	²⁴ Mg ⁺	40 keV	1 x 10 ⁴	-	<16~50	7~15	[23]
2012	WO SBRC	²⁴ Mg ⁺	40 keV	1 x 10 ⁴	-	<150~190	30	[23]

Emittance Variation depending upon Ion Number

25, September, 2012

Ion Number Dependence of Normalized Emittance

25, September, 2012

Perspective for Future Research

- Study of 1D Ordering for bunched 7 MeV proton beam (H. Danared's suggestion) and try to extend to 2D by increase of line density (Prof. A. Wolf's suggestion)
- 2. Increase of cooling efficiency of indirect transverse laser cooling

 \rightarrow further scraping to ~1 x 10³, where simulation expects transition to string state

 \rightarrow needs improvement of S/N ratio and increase available laser power (pre-cooling?)

Summary

- 1. 1D Ordering has been attained for 7 MeV proton at particle number ~2000 and realized the longitudinal temperature of 0.3 K while the transverse temperature is 12 K for particle number of 4000 at the position of β =1.7 m.
- 2. Laser cooling has realized 3.6 K for a coasting beam with the initial beam intensity of 1 x 10⁶ and 16 K for a bunched beam with the beam intensity of 1 x 10⁷. Vertical temperature of the coasting beam became to be 500 K through IBS.

• Indirect transverse laser cooling with the use of SBRC reached the averaged temperatures of 16~50 K and 7~15 K, for horizontal and vertical directions, respectively, (correspond to emittance of several times 10⁻⁸ m • rad), which are lowest ever attained by laser cooling except for the case of PALLAS dealing with 1 eV ²⁴Mg⁺ ion beam

Acknowledgement

M. Nakao, H. Souda, H. Tongu, ICR, Kyoto U., Kyoto Japan, K. Jimbo, IAE, Kyoto U., Kyoto, Japan,

- T. Fujimoto, AEC, Chiba, Japan,
- K. Noda, T. Shirai, NIRS, Chiba, Japan,
- H. Okamoto, K/ Osaki, Hiroshima U., Higashi-Hiroshima, Japan,
- Y. Yuri, JAEA, Takasaki, Japan

I. N. Meshkov, A. V. Smirnov, E. Syresin, JINR, Dubna, Moscow Region, Russia,

M Grieser, MPI-K, Heidelberg, Germany

This work has been supported by Advanced Compact Accelerator Development Program of MEXT, Japanese Government and GCOE Program on Physics at Kyoto University.

Thank you for your kind attention !

For Further Discussion

58

Fractional Momentum Spread vs Particle Number

Reduction of Ripple in Electron Gun

60

25, September, 2012

Abrupt Jump of Momentum Spread and Schottky Power

Pulse Length Ever Attained 7 MeV Protons

Particle Number Dependence

RF Voltage Dependence

62

25, September,野田2章極限粒子どの仏永Rポジウムの於理研Sai太河内記念本rgル

Repair of Klystron

25, September, 2012

Structure of Schottky Pick-Up

Develped at TARN of INS for Stochastic Momentum Cooling (H. Yonehara et al., INS-NUMA-49)

64

Parameters of the Present Experiments

Ion	²⁴ Mg ⁺		
Kinetic Energy	40keV		
Betatron Tune	(2.068,1.105)		
	(2.098,1.103)		
Synchrotron Tune	0.0376~0.1299		
Initial Particle Number	3×10 ⁷		
Initial Momentum Spread	7×10-4		
Laser Detuning	-0.1GHz±0.005GHz		
Laser Power	13mW~20mW(S-LSR Exit)		

65

25, September,野田2章極限粒子区odムシスポジウムのが理知Sai大河内記念本rgル

3 D Laser Cooling expected by Simulation

 $v_H - v_s = integer$,

 $v_H - v_V = integer$

66

Y. Yuri and H.Okamoto, Phys. Rev. ST-AB, 8,114201 (2005)

25, September, 2012 Akira Noda at RuPAC 2012 in Saint-Petersburg

----67

Indirect Transverse Laser Cooling with Intra-beam Scattering (coasting beam) H.-J. Meisner et al., PRL, 77, 623-626 (1996)

68

Indirect Transverse Laser Cooling with Intra-beam Scattering (bunched beam) H.-J. Meisner et al., NIM, A383, 634-636 (1996)

2 x 10⁶ ions σ~1.0 mm

69

Fig. 1. Temporal evolution of the transverse beam temperatures. The open circles show the beam "blowup" after switching off the electron cooling at t = 12 s. The filled triangles represent corresponding measurements with laser cooling switched on at t = 22 s. The solid lines are shown to guide the eye.

25, September, 2012

Two components in longitudinally laser cooled beam

Life of two components

Attainment at S-LSR on Beam Cooling

- **1. Electron Beam Cooling**
 - One dimensional ordering of 7 MeV proton at ordered state: T ~2 K. T_⊥~11 K coasting beam (how about bunched beam?)
 Creation of short bunch length ~3 nsec.
 - →possibility of Bio-cell vertical irradiation course
- 2. Laser Cooling
 - Coasting beam T ~ 3.6K
 - Bunched beam on resonance T ~24 K, T_{\perp}~200 K

off resonance T ~15 K, T_{\perp}~600 K

25, September, 2012
Future Perspectives

- **1. Suppression of intra-beam scattering** \rightarrow **Reduction of Particle Number**
 - →Increase of beam monitor sensitivity
- 2. Experimental Demonstration of 3-dimensional laser cooling by coupling among 3 degrees of freedom (L-H, H-V have been already performed)
- **3. Toward much lower temperature**
 - **Optimization of longitudinal bunched beam cooling selecting out the hot ion beams**
 - Capability of pre-cooling by electron beam cooling In such a happy situation as realize one dimensional
 - crystal
 - \rightarrow suppression of shear heating by dispersionless lattice

25, September, 2012 Akira Noda at RuPAC 2012 in Saint-Petersburg

H-V Coupling with a Solenoid Field

Why Lasers? —Realization of Very High Field Gradient—

25, September, 2012 Akira Noda at RuPAC 2012 in Saint-Petersburg

75

Evidence of Synchro-Betatron Coupling

By H. Souda Capability of pre-cooling by EC (simulation with Betacool) Ion Beam Temperature

$$k_B T_{i\parallel} = m_i c^2 \beta^2 \left(\frac{\Delta p}{p}\right)^2 \qquad T_{i\parallel} = 80 \text{meV} = 930 \text{K}$$
$$T_{i\perp} = m_i c^2 \beta^2 \gamma^2 \frac{\nu \varepsilon}{R} \qquad T_{i\nu} = 120 \text{meV} = 1400 \text{K}$$
$$T_{i\nu} = 150 \text{meV} = 2000 \text{K}$$

Electron Beam Temperature assuming expansion factor 3)

$k_B T_{e\parallel} = \frac{(kT_{cath})^2}{m_e^2 \beta^2 \alpha^2}$	$T_{e\parallel} = 5 \mathrm{meV} = 58 \mathrm{K}$
$m_e c^- \rho^- \gamma^-$ kT_{cath}	$T_{e\perp} = 30 \mathrm{meV} = 350 \mathrm{K}$
$\kappa_B I_{e\perp} = \frac{\alpha_{exp}}{\alpha_{exp}}$	

Effect of pre-cooling (perbiance 2.3µP, Intensity 1 x 10⁷, B~40 G)

Shear Heating and Dispersion Suppressor

Dispersion Suppressor

