## TRANSIENT BEAM RESPONSE IN SYNCHROTRONS WITH A DIGITAL TRANSVERSE FEEDBACK SYSTEM

V.M. Zhabitsky JINR, Dubna, Russia

## Transverse Feedback System in Synchrotrons



# LHC Damper (CERN, JINR)

 $\overline{Q_0}$   $\overline{Q_2}$ 

H H

 $Q_{9}$   $Q_{7}$ 

DK

DK.



Single Bunch Operation: **Damping of Injection Errors** 



**Damper OFF** 



### Damper ON V.Zhabitsky, W.H fle et al. RuPAC 2010

24:00 – 01:00 ADT fast losses test – one pilot at 450 GeV
Achieved very fast losses (could be used for UFO studies)



J. Uythoven, E.B. Holzer (CERN)



### Instabilities



#### 25.09.2012

#### V.M. Zhabitsky (JINR)

## **Response to impulse**

#### Radio technical device



Synchrotrons





$$\begin{split} &\widehat{M}(s_{\mathrm{D}}|s_{\mathrm{P}}) \\ &\widehat{K} \\ &\widehat{K}[n,s_{\mathrm{P}}] = \begin{pmatrix} x[n,s_{\mathrm{P}}] \\ x'[n,s_{\mathrm{P}}] \end{pmatrix} \\ &\widehat{M}(s_{\mathrm{K}}|s_{\mathrm{D}}) \\ &\widehat{M}(s_{\mathrm{K}}|s_{\mathrm{D}}) \\ &\widehat{M}(s_{\mathrm{D}}|s_{\mathrm{P}}) \widehat{X}[n,s] + \Delta x'[n,s_{\mathrm{K}}] \widehat{E} + \Delta x'_{\mathrm{D}}[n] \widehat{M}(s_{\mathrm{K}}|s_{\mathrm{D}}) \widehat{E} \\ &\widehat{X}[n,s_{\mathrm{K}}] = M(s_{\mathrm{K}}|s_{\mathrm{D}}) \widehat{M}(s_{\mathrm{D}}|s_{\mathrm{P}}) \widehat{X}[n,s] + \Delta x'[n,s_{\mathrm{K}}] \widehat{E} + \Delta x'_{\mathrm{D}}[n] \widehat{M}(s_{\mathrm{K}}|s_{\mathrm{D}}) \widehat{E} \\ &\widehat{X}[n,s_{\mathrm{P}} + C] = \widehat{M}(s_{\mathrm{P}} + C|s_{\mathrm{K}}) \widehat{X}[n,s_{\mathrm{K}}] \\ &\widehat{X}[n+1,s] \equiv \widehat{X}[n,s+C] = \widehat{M}(s) \widehat{X}[n,s] + \Delta x'[n,s_{\mathrm{K}}] \widehat{M}_{\mathrm{K}} \widehat{E} + \Delta x'_{\mathrm{D}}[n] \widehat{M}_{\mathrm{D}} \widehat{E} \\ &\widehat{M}(s_{\mathrm{P}}) \equiv \widehat{M}(s_{\mathrm{P}} + C|s_{\mathrm{P}}), \quad \widehat{M}_{\mathrm{K}} \equiv \widehat{M}(s_{\mathrm{P}} + C|s_{\mathrm{K}}), \quad \widehat{M}_{\mathrm{D}} \equiv \widehat{M}(s_{\mathrm{P}} + C|s_{\mathrm{D}}) \,. \end{split}$$

$$\widehat{X}[n+1,s] \equiv \widehat{X}[n,s+C] = \widehat{M}(s)\widehat{X}[n,s] + \Delta x'[n,s_{\mathsf{K}}] \,\widehat{M}_{\mathsf{K}}\widehat{E} + \Delta x'_{\mathsf{D}}[n] \,\widehat{M}_{\mathsf{D}}\widehat{E}$$

### Damper kicker:

$$\Delta x'[n, s_{\kappa}] = S_{\kappa} V_{\text{out}}[n] = S_{\kappa} K_{\text{out}} K_{\text{in}} \sum_{m=0}^{N_{\text{F}}} h[m] V_{\text{in}}[n - \hat{q} - m] u[n - \hat{q} - m]$$
$$\tau_{\text{delay}} = \tau_{\text{PK}} + \hat{q} T_{\text{rev}}$$
$$\tau_{\text{delay}} = \tau_{\text{PK}} + \hat{q} T_{\text{rev}}$$

### Driving force:

$$\Delta x'_{\rm D}[n] \sqrt{\hat{\beta}_{\rm D}} \hat{\beta}_{\rm P} \equiv V_{\rm D} = a_{\rm D} \,\delta[n - n_{\rm D}]$$
$$V_{\rm D} = a_{\rm D} \sin\left(2\pi(n - n_{\rm D})Q_{\rm D} + \phi_{\rm D}\right)\left(u[n - n_{\rm D}] - u[n - n_{\rm D} - N_{\rm D}]\right)$$

$$\mathbf{y}(z) = \mathcal{Z}\{y[n]\}\} \equiv \sum_{n=0}^{\infty} y[n] z^{-n}, \qquad y[n] = 0 \quad \forall n < 0,$$
$$y[n] = \mathcal{Z}^{-1}\{\mathbf{y}(z)\} \equiv \frac{1}{2\pi j} \oint_{\Gamma} \mathbf{y}(z) z^{-1} dz = \sum_{k} \operatorname{Res}\left[\mathbf{y}(z) z^{n-1}; z_{k}\right]$$

25.09.2012

V.M. Zhabitsky (JINR)

$$\widehat{\mathbf{X}}(z,s) = \frac{z\widehat{I} - \widehat{\mathbf{M}}^{-1} \det \widehat{\mathbf{M}}}{\det \left( z\widehat{I} - \widehat{\mathbf{M}} \right)} \left( \mathcal{Z}\left\{ \Delta x_{\mathrm{p}}'[n] \right\} \widehat{M}_{\mathrm{p}}\widehat{E} + z\widehat{X}[0,s] + \frac{g \, z^{-\hat{q}} \, \mathbf{K}(z) \, \delta x_{\mathrm{p}}}{(1 - z^{-1})(\widehat{\beta}_{\mathrm{K}}\widehat{\beta}_{\mathrm{p}})^{1/2} \mathrm{K}_{0}} \, \widehat{M}_{\mathrm{K}}\widehat{E} \right)$$

$$\begin{split} \mathbf{K}(z) &= \mathbf{K}_{\text{out}} H(z) \mathbf{K}_{\text{in}} & \text{It can be done if } |z_k| < 1 \text{ and} \\ & \lim_{n \to \infty} \widehat{X}[n,s] = \lim_{z \to 1} (z-1) \, \widehat{\mathbf{X}}(z,s) = 0. \\ & g &= (\widehat{\beta}_{\kappa} \widehat{\beta}_{\text{P}})^{1/2} \, \mathbf{K}_0 S_{\kappa} S_{\text{P}} & H_{\text{NF}}(z) = (1-z^{-1}). \end{split}$$

$$\widehat{\mathbf{M}} \equiv \widehat{\mathbf{M}}(z,s) = \widehat{M}(s) + \frac{g \, z^{-\hat{q}} \, \mathbf{K}(z)}{(\hat{\beta}_{\scriptscriptstyle \mathrm{K}} \hat{\beta}_{\scriptscriptstyle \mathrm{P}})^{1/2} \, \mathbf{K}_0} \, \widehat{M}_{\scriptscriptstyle \mathrm{K}} \, \widehat{T} \, \widehat{M}(s_{\scriptscriptstyle \mathrm{P}}|s), \qquad \widehat{T} \equiv \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

$$z_{k}^{2} - \left(2\cos(2\pi Q) + \frac{g \, z_{k}^{-\hat{q}} \, \mathbf{K}(z_{k})}{\mathbf{K}_{0}} \, \sin(2\pi Q - \psi_{\mathrm{PK}})\right) z_{k} + 1 - \frac{g \, z_{k}^{-\hat{q}} \, \mathbf{K}(z_{k})}{\mathbf{K}_{0}} \, \sin\psi_{\mathrm{PK}} = 0$$

$$g = 0 \qquad \Rightarrow \qquad z_{1,2}^{(0)} = \exp(\pm j 2\pi Q)$$

TFS: Damping Parameters  

$$x[n, s_{\kappa}] = \sum_{k} A_{k} \sqrt{\hat{\beta}_{\kappa}} e^{-n\alpha_{k} + j(2\pi n \{Q_{k}\} + \Phi_{k})}$$

$$\alpha_{k} \equiv -\ln|z_{k}| = \frac{T_{\text{rev}}}{\tau_{k}}, \quad \{Q_{k}\} = \frac{1}{2\pi} \arg z_{k}$$

If  $g \ll 1$  and  $\mathbf{K}_{in}(\omega)\mathbf{K}_{out}(\omega)$  depends weakly on frequency then:

$$\begin{aligned} \alpha_{m} &= \frac{g \left| \mathbf{K}(\omega_{m}) \right|}{2 \mathrm{K}_{0}} \sin \Psi_{\mathrm{PK}}, \qquad \qquad \omega_{m} = 2\pi (Q+m) f_{\mathrm{rev}} \\ \{Q_{m}\} &= \{Q\} - \frac{g \left| \mathbf{K}(\omega_{m}) \right|}{4\pi \mathrm{K}_{0}} \cos \Psi_{\mathrm{PK}}, \qquad \qquad -0.5 < \{Q\} \leqslant 0.5. \\ \Psi_{\mathrm{PK}} &= \psi_{\mathrm{PK}} + 2\pi \hat{q} \, Q - \arg \mathbf{K}(\omega_{m}) \,, \\ \mathbf{K}(\omega_{m}) &= \mathbf{K}_{\mathrm{in}}(\omega_{m}) \, \mathbf{K}_{\mathrm{out}}(\omega_{m}) \, H \big( z = \mathrm{e}^{\mathrm{j} 2\pi Q} \big) \,, \\ |\mathrm{K}_{0}| &= |\mathbf{K}(\omega_{\mathrm{min}})|, \qquad \mathrm{K}_{0} \sin \Psi_{\mathrm{PK}}(\omega_{\mathrm{min}}) > 0, \end{aligned}$$



Figure 2: The magnitude G(Q) and phase response  $\Phi(Q)$  graphics for the notch and Hilbert filters (solid curve) and for the notch filter and the FIR filter of the first order (dashed curve)

## **TFS & Beam response to δ-kick**



## **TFS & Beam response on δ-kick**

| Beam | Plane | Gain setting | Damping time [turns] |      |      |      |      |       |
|------|-------|--------------|----------------------|------|------|------|------|-------|
|      |       | (dB)         | Q7+                  | Q7-  | Q9+  | Q9-  | ave  | StDev |
| 1    | hor.  | -49          | 1188                 | 729  | 1247 | 1172 | 1084 | 239   |
| 1    | hor.  | -43          | 1096                 | 613  | 969  | 1066 | 936  | 222   |
| 1    | hor.  | -37          | 884                  | 564  | 476  | 873  | 699  | 210   |
| 1    | hor.  | -31          | 370                  | 383  | 902  | 414  | 517  | 257   |
| 1    | hor.  | -25          | 692                  | 278  | 594  | 288  | 463  | 212   |
| 1    | hor.  | -19          | 294                  | 203  | 280  | 200  | 244  | 50    |
| 1    | hor.  | -13          | 214                  | 290  | 214  | 285  | 251  | 42    |
| 1    | hor.  | -7           | 83                   | 89   | 78   | 89   | 85   | 5     |
| 1    | hor.  | -1           | 43                   | 39   | 36   | 44   | 41   | 5     |
| 1    | vert. | -49          | 887                  | 800  | 1049 | 999  | 934  | 112   |
| 1    | vert. | -25          | 558                  | 496  | 592  | 594  | 560  | 46    |
| 1    | vert. | -19          | 460                  | 408  | 499  | 467  | 458  | 38    |
| 1    | vert. | -13          | 301                  | 165  | 341  | 317  | 281  | 79    |
| 1    | vert. | -7           | 86                   | 89   | _    | _    | 88   | 2     |
| 1    | vert. | -1           | 47                   | 39   | 48   | _    | 44   | 5     |
| 2    | hor.  | -49          | 1735                 | 1758 | 1828 | 1677 | 1750 | 62    |
| 2    | hor.  | -25          | 398                  | 422  | 395  | 419  | 408  | 14    |
| 2    | hor.  | -19          | 251                  | 328  | 574  | 314  | 367  | 142   |
| 2    | hor.  | -13          | 224                  | 188  | 400  | 238  | 262  | 94    |
| 2    | hor.  | -7           | 89                   | 83   | 87   | 91   | 87   | 4     |
| 2    | hor.  | -1           | 45                   | 41   | 31   | 56   | 43   | 10    |
| 2    | vert. | -49          | 405                  | 360  | 917  | 1224 | 726  | 417   |
| 2    | vert. | -25          | 347                  | 363  | 484  | 411  | 401  | 62    |
| 2    | vert. | -19          | 172                  | 243  | 295  | 170  | 220  | 60    |
| 2    | vert. | -13          | 70                   | 90   | 77   | 96   | 83   | 12    |
| 2    | vert. | -7           | 43                   | 42   | 46   | 46   | 44   | 2     |
| 2    | vert. | -1           | 22                   | 20   | 20   | 20   | 20   | 1     |

### W. Höfle et al. CERN ATS/Note/2011/131 2011-12-12



Figure 1.2: Envelope fit example for Beam 1, Q7 data, -19 dB gain setting.





### **TFS: variation of parameters**



 $T_{\rm rev}/\tau \equiv \alpha(g, Q - Q_0) = \alpha_n;$ 

#### 25.09.2012

**TFS & Sinusoidal driving force** 





Q=59.310,  $\mu_{pK} = 59.250$ ,  $\Psi_{pK} = 97.0^{\circ}$ , FB on: K = 1.633, FIR: a = -1.00 + FIR: a = 0.700, g = 0.050

### Isolines: $a(t/T_{rev}, Q_{D}-\{Q\}) = a_{n}$



Q=59.310,  $\mu_{pK} = 59.250$ ,  $\Psi_{pK} = 97.0^{\circ}$ , FB on:  $K_0 = 1.633$ , FIR:  $a_1 = -1.00 + FIR$ :  $a_2 = 0.700$ , g = 0.050

# **TFS:** Resonance Curve

$$\begin{split} \frac{I(Q_{\rm d})}{I_{\rm max}} &= \frac{1}{I_{\rm max}} \left| \det \left( z_{\rm d} \widehat{I} - \widehat{\mathbf{M}}(z_{\rm d}) \right) \right|^{-2}, \\ z_{\rm d} &= \exp(j \, 2\pi \{ Q_{\rm d} \}), \quad I_{\rm max} = I \left( Q_{\rm d}^{(\rm max)} \right). \end{split}$$

If *g* « 1:

$$\begin{aligned} \frac{I(Q_{\rm d})}{I_{\rm max}} &= \frac{\alpha_m^2}{4\pi^2(\{Q_{\rm d}\} - \{Q_m\})^2 + \alpha_m^2} \,. \\ \{Q_{\rm d}^{(\rm max)}\} &= \{Q_m\} = \{Q\} - \frac{g \left|\mathbf{K}(\omega_m)\right|}{4\pi K_0} \cos \Psi_{\rm pk} \,. \end{aligned}$$

## **TFS & Sinusoidal driving force**







$$a(t/T_{rev}, Q_{D}-\{Q\}) = a_{r}$$

### Resonance



## **LHC** Damper

![](_page_19_Figure_1.jpeg)

#### W. Höfle, D. Valuch (CERN)

### **TFS & Sinusoidal driving force**

Q=59.310,  $\mu_{pK} = 59.250$ ,  $\Psi_{pK} = 92.0^{\circ}$ , FB on: K<sub>0</sub>=1.589, FIR: a<sub>1</sub>=-1.00 + FIR: a<sub>2</sub>=0.610, g = 0.080

Q=59.310,  $\mu_{pK} = 59.250$ ,  $\Psi_{pK} = 87.9^{\circ}$ , FB on: K<sub>0</sub>=1.564, FIR: a<sub>1</sub>=-1.00 + FIR: a<sub>2</sub>=0.540, g = 0.080

![](_page_20_Figure_3.jpeg)

## **Base-Band Q (BBQ) Measurements at the LHC**

![](_page_21_Figure_1.jpeg)

## Base-Band Q (BBQ) Measurements at the LHC

![](_page_22_Figure_1.jpeg)

Damper ON (chirp excitation)

M. Gasior (CERN)

![](_page_22_Figure_4.jpeg)

# Q-map (top) and Q-line (bottom) from BBQ Display

### CONTROLLED TRANSVERSE BLOW-UP OF HIGH-ENERGY PROTON BEAMS FOR APERTURE MEASUREMENTS AND LOSS MAPS

W. Hofle \*, R. Assmann, S. Redaelli, R. Schmidt, D. Valuch, D. Wollmann, M. Zerlauth, CERN, Geneva, Switzerland

Proceedings of IPAC2012, New Orleans, Louisiana, USA. Pp.4059-4061

![](_page_23_Figure_3.jpeg)

Figure 4: Loss maps obtained with the damper blow-up method with one nominal bunch in the LHC (blue: cold part of LHC, red and black: warm part).

![](_page_23_Figure_5.jpeg)

Figure 5: Loss maps obtained by crossing the third-order resonance with one nominal bunch in the LHC (blue: cold part of LHC, red and black: warm part).

# One can get the aperture in one single measurement taking 1-2 minutes only.

25.09.2012

![](_page_23_Figure_9.jpeg)

Profiles measured with the wire scanners after a blow-up targeted to bunch 2: blow-up to aperture limit of this bunch; bunch 1 emittance unchanged.

![](_page_24_Picture_0.jpeg)

### Wednesday: ADT tune measurement test

![](_page_24_Figure_3.jpeg)

- Test tune measurement by selective excitation of 6 bunches.

- FFT of data for each observed bunch, average the spectra, find the peak
- Very successful test. Validation during a ramp required (including emittance blow-up measurement) + operational implementation

W. Höfle, D. Valuch (CERN)

![](_page_24_Figure_8.jpeg)

V.M. Zhabitsky (JINR)

## Conclusion

Measurements of a beam response to the  $\delta$ -impulse are the effective approach to tune the transverse feedback system in the damping mode of coherent betatron oscillations of the bunch.

Observation of a beam response to the harmonic impulse can be a good instrument for selective measurements of circulated bunches because of the dedicated resonance behavior of the detected signal in synchrotrons with a digital transverse feedback system.

## Thank you for your attention!