

Status of e⁺e⁻collider VEPP-2000

Yu.Shatunov for the VEPP-2000 team

Saint-Petersburg 24.09.2012

Outline

🖢 Historical remarks 法 Round beams concept 🖢 VEPP-2000 overview を Machine tuning beam-beam study 法 Round beam luminosity First experimets at 2010-2012 Energy calibration 🖢 Upgrade plans Conclusion

Layout of VEPP-2000 complex

(2001-2007)

The Concept of Round Colliding Beams

\succeq Small and equal β-functions at IP:	$\beta_{\rm x} = \beta_{\rm z}$
Equal beam emittances:	$\varepsilon_{x} = \varepsilon_{z}$
Equal betatron tunes:	$v_x = v_z$
Angular momentum conservation:	$M_y = x'z - xz'$
Beam-beam parameter $\xi = \frac{N^{-} r_{e}}{4\pi\gamma\epsilon} \approx$	0.15

Collider overview

L = 24.39 m f_{acc} = 172 MHz V_{acc} = 120 kV E=0.2 – 1 GeV $B_{bend} = 2.4 T$ $B_{sol} = 13 T$ $\beta^* = 2 - 10 \text{ cm}$ $\sigma_s = 3 \text{ cm}$ $\epsilon = 1.4 \times 10^{-7} mrad$ v_{x,z}= 2.1; 4.1 A = 0.036ξ = 0.15 $N^{\pm} = 10^{11}$ L=1×10³²cm⁻²s⁻¹

VEPP-2000 lattice

Machine tuning

Closed Orbit corrections

Pick-ups Orbit Response Matrix to focusing offsets ($4 \otimes 32$) SVD analysis \longrightarrow steering coil corrections 2-3 iterations + minimizing of ΣI_{cor} \longrightarrow correctors setting

 Δ_x ; $\Delta_z \simeq \pm 0.2 \text{ mm}$

Lattice corrections

BPMs ORM to steering coils modulations (20 \otimes 36) SVD analysis focusing corrections (quads +solenoids) 3–4 iterations lattice setting

β*; zero dispersion outside achromats;

*** Cou**pling compensation

1.5 Tm field of CMD detector + solenoids compensating coils

3 families of skew quads $\rightarrow v_1 - v_2 < 0.003$

Lattice corrections

Lattice and beam sizes (I[±] <1mA)

B Dubna R U S S Moscow S S Protvino S I Qbninsk I

^P E RuPAC'12²

E TUTE Saint-Petersburg T Novosibirsk E Zvenigorod 1 R Obninsk S B U R G Dubna

 \mathbf{S} т

Dubna R U

s s

"Strong-strong" beam-beam ("dynamic beta and emittance")

Dubna R U S Moscow S Protvino S

^E RuPAC'12²

ER SBURG

Obninsk Protvino Moscow Dubna

s т \mathbf{P}

 \mathbf{T}

Threshold current vs.tune ("week-strong")

Luminosity measurements

Bhabha scattering in the SND and CMD detectors $\theta_{scatt} \ge 0.5$ Main disadvantage: \Rightarrow low counting rate $\dot{n} \simeq 10$ Hz at L=1 10^{31} cm⁻²s⁻¹

Basic formulae of the luminosity:

$$L = \frac{f_0 \cdot \mathbf{N}^+ \cdot \mathbf{N}^-}{4\pi \cdot \Sigma_+^* \cdot \Sigma_-^*}$$

Beam profile measurements at 16 points $\Rightarrow \Sigma^* = \sqrt{(\sigma_x^*)^2 + (\sigma_z^*)^2}$ with dynamic β -functions and beam emittance, but under assumption: no other lattice distortions besides counter beam. Time of measurement $\simeq 1$ s at any energy.

Luminosity vs. §

Luminosity measurements (E = 837 MeV; Run 2011)

E=	837.035	$\beta^*=$	8.50539	v0=	0.181983	Lnom=	$1.44769 imes 10^{31}$	ξnom=	0.0542719
I+=	62.45	I-=	79.3375	N+=	3.17547 × 10 ¹⁰	N-=	4.03416×10 ¹⁰		
$\beta_{X}^{+}=$	6.61923	$\beta_{z}^{+}=$	7.30896	β x ⁻ =	6.33846	$\beta_{Z}^{-}=$	7.55464		
€x ⁺ /€0=	1.19075	∈z ⁺ /∈0=	1.28085	∈x⁻/∈ 0 =	1.18568	∈z⁻/∈ <mark>0</mark> =	1.29095		
$\sigma_{\mathbf{X}}^+=$	0.0895587	$\sigma_{Z}^{+}=$	0.0976045	$\sigma_{\mathbf{X}}^{-}=$	0.0874519	$\sigma_{z}^{-}=$	0.0996221		
Lspec=	0.289726	Lerr=	$1.89 imes 10^{30}$	$\xi =$	0.0447				

Luminosity at runs 2010-2012 (CMD data)

™ RuPAC'1

URG

^Е в в

 $e^+e^- \rightarrow Pbar P$

- < 1% systematic error for most of the channels is needed!
- Absolute energy calibration $\simeq 10^{-4}$ must be done in whole energy range

Radiative polarization

Beam energy calibration

E=990 MeV; δE/E ~ 0.2 MeV

VEPP-2000 complex upgrade

Conclusion

- **&** Round beams give a serious luminosity enhancement.
- **The beam-beam parameter achieves a value** $\xi = 0.15$.
- **b** Data taking is going with 2 detectors up to 1 GeV
- **b Prec**ise beam energy calibration is in progress.
- To reach the target luminosity (L=1×10³² cm⁻² s⁻¹): more positrons and booster BEP upgrade for beam transfer at 1GeV are needed.

Thanks for your attention!

Yu.Shatunov for the VEPP-2000 team

Saint-Petersburg 24.09.2012