Heavy Ion Collider Facility NICA at JINR (Dubna): Status and Development.

I.Meshkov, G.Trubnikov

for NICA team

Joint Institute for Nuclear Research, Dubna

24 September 2012 St.Petersburg, RUPAC-2012

Main goals of the NICA accelerator facility:

- study of hot and dense baryonic matter

& nucleon spin structure

- development of accelerator facility

for HEP in JINR providing intensive beams of relativistic ions from **p** to Au energy range $\sqrt{S_{NN}} = 4..11$ GeV (Au⁷⁹⁺)

> and polarized **protons** and **deutrons** (energy range $\sqrt{S_{NN}} = 4..26$ GeV for p)

2nd generation HI experiments

STAR/PHENIX @ BNL/RHIC. Originally designed for higher energies ($s_{NN} > 20$ GeV), low luminosity for LES program L<10²⁶ cm⁻²s⁻¹ for Au⁷⁹⁺

NA61 @ CERN/SPS. Fixed target, non-uniform acceptance, few energies (10,20,30,40,80,160A GeV), poor nomenclature of beam species

3nd generation HI experiments

CBM @ FAIR/SIS-100/300 Fixed target, E/A=10-40 GeV, high luminosity

MPD & SPD @ JINR/NICA. Collider, small enough energy steps in the range $s_{NN} = 4-11$ GeV, a variety of colliding systems, L~10²⁷ cm⁻²s⁻¹ for Au⁷⁹⁺

NICA Project at JINR, I.Meshkov, G.Trubnikov

QCD phase diagram - Prospects for NICA

Energy Range of NICA unexplored region of the QCD phase diagram:

- Highest net baryon density
- Onset of deconfinement phase transition
- Strong discovery potential:
 a) Critical End Point (CEP)
 b) Chiral Symmetry Restoration
- Complementary to the RHIC/BES, FAIR, CERN & Nuclotron-M experimental programs

NICA facilities provide unique capabilities for studying a variety of phenomena in a large region of the phase diagram

NICA Project at JINR, I.Meshkov, G.Trubnikov

Synchrophasotron (1957-2002) → Nuclotron (1993) – superconducting accelerator for ions and polarized particle – physics of ultrarelativistic heavy ions, high energy spin physics

Nuclotron provides now performance of experiments with accelerated proton and ion beams (up to Xe42+, A=124) with energies up to 6 AGeV (Z/A = 1/2)

A.Sidorin's talk on Wednesday

NICA Project at JINR, I.Meshkov, G.Trubnikov

	Nuclotron beam intensity (particle per cycle)			
Beam	Current	lon source type	New ion source + Booster	
р	3·10 ¹⁰	Duoplasmotron	5·10 ¹²	
d	5·10¹⁰	,,	5·10 ¹²	
⁴ He	8·10 ⁸	,,	1.10 ¹²	
d↑	2·10 ⁸	SPI	1.10 ¹⁰	
⁷ Li	8.10 ⁸	Laser	5·10 ¹¹	
^{11,10} B	1.10 ^{9,8}	,,		
¹² C	5.10 ⁹	,,	2 ⋅ 10 ¹¹	
²⁴ Mg	2·10 ⁷	,,		
¹⁴ N	1.10 ⁷	ESIS ("Krion-6T")	5·10 ¹⁰	
²⁴ Ar	1.10 ⁹	,,	2 ·10 ¹¹	
⁵⁶ Fe	2·10 ⁶	,,	5 ⋅ 10 ¹⁰	
⁸⁴ Kr	1·10 ⁴	,,	1.10 ⁹	
¹²⁴ Xe	1·10 ⁴	,,	1.10 ⁹	
¹⁹⁷ Au	-	,,	1.10 ⁹	

NICA Project at JINR, I.Meshkov, G.Trubnikov

http://nica.jinr.ru

6

Complex NICA @ JINR (VBLHEP)

NICA Project at JINR, I.Meshkov, G.Trubnikov

Superconducting accelerator complex NICA (Nuclotron based Ion Collider fAcility)

NICA Project at JINR, I.Meshkov, G.Trubnikov

NICA goals

1a) Heavy ion colliding beams 197Au79+ x 197Au79+ at $\sqrt{s_{NN}} = 4 \div 11 \text{ GeV} (1 \div 4.5 \text{ GeV/u} \text{ ion kinetic energy})$ at L_{average}= 1x10²⁷ cm⁻²·s⁻¹ (at $\sqrt{s_{NN}} = 9 \text{ GeV}$)

1b) Light-Heavy ion colliding beams of the same energy range and L

2) Polarized beams of protons and deuterons in collider mode:

p↑p↑ $\sqrt{s_{pp}}$ = 12 ÷ 27 GeV (5 ÷ 12.6 GeV kinetic energy) d↑d↑ $\sqrt{s_{NN}}$ = 4 ÷ 13.8 GeV (2 ÷ 5.9 GeV/u ion kinetic energy)

 $L_{average} \ge 1x10^{30} \text{ cm}^{-2} \cdot \text{s}^{-1}$ (at $\sqrt{s_{pp}} = 27 \text{ GeV}$)

3) The beams of light ions and polarized protons and deuterons for fixed

target experiments:

Li ÷ Au = 1 ÷ 4.5 GeV /u ion kinetic energy

p, p↑ = 5 ÷ 12.6 GeV kinetic energy

d, $d\uparrow = 2 \div 5.9$ GeV/u ion kinetic energy

4) Applied research on ion beams at kinetic energy

from 0.5 GeV/u up to 12.6 GeV (p) and 4.5 GeV /u (Au)

NICA Project at JINR, I.Meshkov, G.Trubnikov

NICA injector chain

Booster Synchrotron, C = 211 m

NICA Project at JINR, I.Meshkov, G.Trubnikov

SC Booster-Synchrotron

Booster Parameters

Particles	ions A/Z≤3		
Injection energy, MeV/u	3		
Maximum energy, GeV/u	0.6		
Magnetic rigidity, T·m	1.55 ÷ 25.0		
Circumference, m	211.2		
Fold symmetry	4		
Quadrupole periodicity	24		
Betatron tune	5.8/5.85		

Unique Low Energy (1 - 4.5 GeV/u) Collider of Extremely High Luminosity L=1e27

NICA Project at JINR. I.Meshkov. G.Trubnikov

Proposed Scheme of Ion Stacking and Bunch Formation in The Collider

Two regimes and cooling methods

- 1. Ion acceleration in Linac Booster Nuclotron up to experiment energy $1 \le E_{ion} \le 4.5$ GeV/u, injection and storage in Collider at experiment energy;
- Ion acceleration in Linac Booster Nuclotron up to "certain" energy, injection and storage in Collider, then acceleration in Collider up to the experiment energy.

Storage \Rightarrow with Barrier Bucket method + Electron cooling (E_{kin}< 2.5GeV/u) or Stochastic cooling (E_{kin} > 2.5 GeV/u)

Acceleration in the collider:

if necessary – with Barrier Buckets RF system

Role of Beam Cooling Beam Stacking with BB System and Cooling

- **1**. Beam stacking using BB system: Injection repetition is 10s, the cooling times has to be short enough
- 2. Longitudinal cooling during beam bunching
- **3**. During experiment:
- in IBS dominated mode Suppression of IBS;
- in SC dominated mode providing optimum phase volume

E > 2.5 GeV/u: stacking with Stochastic cooling

The cooling time is proportional to the bunching factor for "almost" coasting beam in BB the cooling times \sim 10 sec

E < 2.5 GeV/u: Stacking with Electron cooling

Problem – cooling time strongly depends on energy and does not depend on bunching factor. The cooling power sufficient for experiment can be insufficient for effective stacking

NICA Project at JINR, I.Meshkov, G.Trubnikov

Beam Cooling at Experiment

Two modes of the collider operation

IBS dominated mode	Space charge dominated		
	mode		
Cooling time is comparable with IBS	Cooling time is sufficiently shorter		
times	IBS times		
Emittance and momentum spread	Emittance and momentum spread		
are related to each other in	are optimized independently,		
accordance with "equi-partitioning":			
$\tau_{IBS,long} = \tau_{IBS,h} = \tau_{IBS,v}$ In opposite case – fast bunch	The bunch relaxation is suppressed by cooling		
relaxation			
At the large energy, where required	At small energy, where luminosity is		
luminosity can be obtained at small	limited by space charge effects		
tune shift			

Ring circumference, m	503,04			
Number of bunches	24			
Rms bunch length, m	0.6			
Beta-function in the IP, m	0.35			
Ring acceptance (FF lenses)	40 π·mm·mrad			
Long. acceptance, $\Delta p/p$	±0.010			
Gamma-transition, γ_{tr}	7.091			
lon energy, GeV/u	1.0	3.0	4.5	
lon number per bunch	2.75·10 ⁸	2.4·10 ⁹	2.2·10 ⁹	
Rms momentum spread, 10 ⁻³	0.62	1.25	1.65	
Rms beam emittance, h/v,	1.1/	1.1/	1.1/	
(unnormalized), π ·mm·mrad	1.01	0.89	0.76	
Luminosity, cm ⁻² s ⁻¹	1.1e25	1e27	1e27	
S	SC dominated IBS domina (∆Q < 0.05		o <mark>minated</mark> < 0.05)	

Unique SC Heavy Ion Source KRION with 3T and 6T SC solenoid

Heavy Ion Linac (HILac) **3MeV/u** Design and fabrication under contract with "BEVATECH OHG" Germany, Offenbach/Main (IAP, Frankfurt University) to be delivered at JINR September 2013.

NICA Project at JINR, I.Meshkov, G.Trubnikov

Stochastic cooling system installed at Nuclotron – prototype for Collider: W = 2-4 GHz, P = 60 W. (collaboration JINR - IKP FZJ - CERN)

HV Electron cooling system design and prototyping: Collaboration JINR – AREI - BINP

Poster N.Shurkhno, Tuesday

Slot-coupler RF structure (by IKP FZJ)

Kicker station

Pick-Up station

HV Generator prototype U=250 kV, I=1mA

S.Yakovenko's talk on Tuesday

RF stations for booster – manufacturing is under completion (BINP) RF stations for collider – under conceptual design (BINP)

Barrier Bucket cavity (preliminary design, BINP)

RF-2 and RF-3 resonators preliminary design (BINP)

1400

Booster RF stations (2 p.) under manufacturing at BINP

A.Eliseev's talk on Monday

NICA Project at JINR, I.Meshkov, G.Trubnikov

NICA Cryogenics

wet turboexpander (300 000 terns/min)

LHEP has unique the most powerful He liquifier complex in Europe:

Cooling power 4 kW at 4.5 K (1000 litre/sec). With new liquid He plant, cooling power for NICA will be doubled up to <u>8 kW at 4.5K</u>

NICA Project at JINR, I.Meshkov, G.Trubnikov

Booster Synchrotron for NICA

NICA Project at JINR, I.Meshkov, G.Trubnikov

Magnets for the Booster

Booster dipole at cryo-test (9690A) and magnetic measurements

Sextupole corrector prototype for SIS100 at assembly

Beampipe for booster magnet

NICA

NICA Project at JINR, I.Meshkov, G.Trubnikov

Magnets for the Collider

Cryo-tests (autumn 2012), magnetic measurements, new cryo-plant at b.217 (power convertors, cryogenics, etc.)serial production...

NICA Project at JINR, I.Meshkov, G.Trubnikov

http://nica.jinr.ru

H.Khodzhibagiyan's talk on Thursday

Стенд для сборки и испытаний сверхпроводящих магнитов

Стенд предназначен для круглосуточной сборки и серийных криогенных испытаний сверхпроводящих магнитов следующих типов:

- Дипольный магнит Бустера NICA 40 шт.
- Квадрупольный магнит Бустера NICA 48 шт.
 Дипольный магнит Коллайдера NICA 80 шт.
- Квадрупольный магнит Коллайдера NICA 86 шт. - Квадрупольный магнит 515100 (проект FAIR) - 175 шт.

При параллельной работе на 6 терминалах стенда планируется проводить до 11 испытаний магнитов в месяц. Запуск стенда в эксплуатацию намечен на 2013 г.

Test facility for the assembling and testing of superconducting magnets

The test facility is designed for round the clock assembling and cryogenic testing of superconducting magnets of the following types:

- Dipole magnet for the NICA Booster 40 pcs.
- Quadrupole magnet for the NICA Booster 48 pcs.
- Dipole magnet for the NICA Collider 80 pcs.
- Quadrupole magnet for the NICA Collider 86 pcs. - Quadrupole magnet for the SIS100 (Project FAIR) - 175 pcs.

The test facility will allow testing of up to 11 magnets per month, when operating in parallel on 6 benches.

п

Commissioning of the test facility is scheduled for 2013.

Superconducting accelerator complex NICA (Nuclotro sed lon Collider (Acility) Fixed target experim area (b.200) 100 Marinter KREM4-6T (3-660 MeV/u) NALES-PLAUSOR Synchrophasishta) yolee IS MeV/s 0.0-4.5 Cr/// Crypgenics.

Technological part of the TDR (main equipment, engineering systems, etc), radiation and environmental safety, architecture had been fulfilled. Now – the final stage: capital spending sights. Plan – to submit all documents to the State Expertise – end of 2012.

::::

NICA TDR:

 \mathbf{C}

- Call is opened
- JINR Expertise 1 month
- Tender until December

Late autumn 2012:

- Start of the preparational civil construction.
- State expertise

NICA schedule

	2011	2012	2013	2014	2015	2016	2017
ESIS KRION							
LINAC + channel							
Booster + channel							
Nuclotron-M							
Nuclotron- $M \rightarrow NICA$							
Channel to collider							
Collider							
Diagnostics							
Power supply							
Control systems							
Cryogenics							
MPD							
Infrastructure							

R&D Design

Mount.+commis.

Commis/opr

NICA Collaboration

Thank you for your attention !

