

O. Meshkov, V. Smaluk

Booster NSLSS-II beam diagnostics

RUPAC 2012, St. Petersburg, 28 September

Booster NSLSS-II projected parameters

•	Perimeter	158,4 m
•	Injection energy	200 MeV
•	Extraction energy	3 000 MeV
•	Repetition rate	1 Hz
•	HF	499,68 MHz
•	Horizontal emittance (3 GeV)	< 40 nm⋅rad
•	Extraction pulses jitter	< 0,1 %
•	Beam charge	10 nC
•	Linac - main ring charge efficiency	> 70 %
•	Annual operation time	6 000 h
•	Unplanned shutdown time	<0,1 %

RUPAC 2012, 28 September

1

Beam position monitors BPM housings and supports (BINP)

Type 1 (arcs): 28+1 pcs

All 37 BPM housings have been manufactured and most of them are installed

Type 2 (sections): 8 pcs

RUPAC 2012, 28 September

Booster NSLS II beam diagnostics

Beam position monitors Button electrodes (MPF products Inc.)

159 buttons have been manufactured. A quality problem was faced when assembling the 1st BPM: the design dimensional tolerances of 0.005" (0.127 mm) were not fulfilled.

For all buttons, the button-flange angular misalignment and button-flange non-axiality have been measured using Zeiss machine.

5 defective buttons have been replaced by MPF according to manufacturer's warranty.

Beam position monitors Bench measurements (BINP)

СИБИРСКОЕ ОТДЕЛЕНИЕ РАН ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ им, Г.И.Будкера

THE BUDKER INSTITUTE OF NUCLEAR PHYSICS SB RAS 630000 Novosibirsk RUSSIA Факс/Fax: +7 (383) 330-71-63

INSPECTION REPORT

NSLS-II Booster BPM Assembly BR-A1PKU2

4. ELECTRIC MEASUREMENTS

Industries. Inc.) at 10 kHz, certified accuracy is 2%. The measured data are given blow

0023

0023

0018

3 MHz sine signal. The signals induced to the buttons are measured. The horizontal X

respectively; K_{va}, K_{va} are the initial scale factors, calculated on the base of first derivative at the BPM center. The measurement results are given in Fig. 1, the antenna positions are shown by crosses connected by the motion path, the measured values - by circles

The coordinate grid of BPM has been measured using a movable RF antenna with a

Pickup-electrode

and vertical Y coordinates are calculated using the formula

 $X = K_{x0} \frac{V_A - V_B - V_C + V}{V_A + V_A +$

where V. V. V. V. are the amplitudes of voltage

The button capacitances have been measured by a LCR Meter MT4090 (Motech

Part number Capacitance, pl 0017

8.55

8.60

8.55

8.30

 $Y = K_{r_0} \frac{V_A + V_B - V_C}{T' - T'}$

4. ELECTRIC MEASUREMENTS

The button capacitances have been measured by a LCR Meter MT4090 (Moted Industries, Inc.) at 10 kHz, certified accuracy is 2%. The measured data are given blow:

Picku	p-electrode	Part number	Capacitance, pF
	A	245	8.23
	В	237	8.37
	C	247	8.16
	D	206	7.98

The coordinate grid of BPM has been measured using a movable RF antenna with a 3 MHz sine signal. The signals induced to the buttons are measured. The horizontal Xand vertical Y coordinates are calculated using the formulae

$$X = K_{x0} \frac{V_A - V_B - V_C + V_D}{V_c + V_c + V_c},$$
 $Y = K_{x0} \frac{V_A + V_B - V_C - V_D}{V_c + V_c + V_c},$

where V. V. V. V. are the amplitudes of voltage induced to the buttons A. B. C. D. respectively: K ... K ... are the initial scale factors, calculated on the base of first derivative

at the BPM center. The measurement results are given in Fig. 1, the antenna positions are shown by crosses connected by the motion path, the measured values - by circles

An error of beam position calculated using the linear formulae (1) can exceed 1 mm inside the circle of 8.5 mm radius. To decrease this error, a 3rd-order polynomia linearization is implemented: X and Y are calculated as:

$$X = \sum_{i,j} C_{xq} x^i y^j$$
, $Y = \sum_{i,j} C_{xq} x^j y^j$, (6)

where x and y are the coarse values of coordinates calculated using the formula

$$-K_{x}\frac{V_{a}-V_{a}-V_{c}+V_{b}}{V_{a}+V_{a}+V_{c}+V_{c}}, \qquad y=K_{y}\frac{V_{a}+V_{a}-V_{c}-V_{b}}{V_{a}+V_{a}+V_{c}+V_{b}}, \qquad (3)$$

The polynomial terms with x^0y^0 give the shift of BPM electrical zero. Corrected scale factors K_x, K_y and polynomial coefficients C_{xy}, C_{yy} are calculated from the data shown in Fig. 1, for a circle of 8.5 mm radius (optimization region), inside which the accurate measurements of beam position are required.

The result of linearization is presented in Fig. 2, the antenna positions are shown b crosses, the measured values - by circles,

Producer:	BINP	BPM:	BR-A1PKU2
Customer:	BNL	Date:	
	•		

An error of beam position calculated using the linear formulae (1) can exceed 1 mm inside the circle of 8.5 mm radius. To decrease this error, a 3rd-order polynomia linearization is implemented: If and If are calculated as:

$$X = \sum_{i,j} C_{x_0} x^i y^j$$
, $Y = \sum_{i,j} C_{x_0} x^i y^j$, (2)

where x and y are the coarse values of coordinates calculated using the formulae

$$x = K_x \frac{V_x - V_x - V_c + V_c}{V_x + V_x + V_c + V_c},$$
 $y = K_r \frac{V_x + V_x - V_c - V_c}{V_x + V_x + V_c + V_c}.$ (5)

The polynomial terms with x^0y^0 give the shift of BPM electrical zero. Corrected scale factors K_{x} , K_{y} and polynomial coefficients C_{x} , C_{y} , are calculated from the data shown in Fig. 1, for a circle of 8.5 mm radius (optimization region), inside which the accurate measurements of beam position are required.

The result of linearization is presented in Fig. 2, the antenna positions are shown by crosses, the measured values - by circles

BINP BR-XSPKU1 Producer: BPM Customer: BNL Date

All BPM assemblies have been measured using a test bench.

A 3rd–order polynomial linearization is implemented. Using the data measured, a table of coefficients has been calculated for each BPM.

The measurement results are summarized in the СИБИРСКОЕ ОТДЕЛЕНИЕ РАН inspection reports.

ялерной физики

им. Г.И.Будкера

бирск. РОССИ

THE BUDKER INSTITUTE OF

NUCLEAR PHYSICS SE RAS

bayo/Fap

NSLS-II Booster BPM Assembly BR-XSPKU1

2011

Beam position monitors Cabling (BNL)

LMR400 (9 dB/100 m @ 500 MHz) LMR240 (18 dB/100 m @ 500 MHz)

Additional noise protection is provided by shielded cable trays

Beam position monitors PTC module (BNL)

All PTC modules with support plates for booster have been manufactured.

Beam position monitors BPM receivers (BNL)

Successful Beam Test has been performed at ALS (Berkeley lab).

Turn-by-turn resolution: $\sigma_x = 1.66 \mu m$, $\sigma_y = 1.71 \mu m$

Single-bunch signal

RUPAC 2012, 28 September

Booster NSLS II beam diagnostics

Beam position monitors Testing and installation (BNL)

RUPAC 2012, 28 September

Beam position monitors Software (BNL)

Horizonta	al					Vertical			
Name	Current	Position-X	GoldenTraj	Difference		Name	Position-Y	GoldenTraj	Difference
{LTB_P1}	0.002052 m/	0.000 um	0.000 um	0		{LTB_P1}	0.000 um	0.000	0
{LTB_P2}	0.010098 m/	2,223.415 ur	0.000 um	2,223		{LTB_P2}	612.244 um	0.000	612
{LTB_P3}	-0.000535 m	8,060.281 ur	0.000 um	8,060		{LTB_P3}	8,061.257 ur	0.000	8,061
{LTB_P4}	Disconnecte	Disconnecte	Disconnecte	Disconnecte		{LTB_P4}	Disconnecte	Disconnecte	Disconnecte
{LTB_P5}	Disconnecte	Disconnecte	Disconnecte	Disconnecte		{LTB_P5}	Disconnecte	Disconnecte	Disconnecte
{LTB_P6}	Disconnecte	Disconnecte	Disconnecte	Disconnecte		{LTB_P6}	Disconnecte	Disconnecte	Disconnecte
P1		- P2		P3		P4	P5		P6
• [LTD	1							
								Trajectory	/ Correction

DC current transformer Bergoz NPCT-CF4.5''-60.4-120-UHV-H

Measured sensitivity: 10.05 V / 20 mA DC, no zero offset correction

100

DC current transformer Bergoz NPCT-CF4.5''-60.4-120-UHV-H

Bandwidth has been measured using Agilent 4395

Measured bandwidth (-3 dB): range 200 mA - 13.5 kHz

range 20 mA - 7.75 kHz

Fast current transformer Bergoz FCT-WB-CF6''-60.4-40-20:1-UHV-H

Fast current transformer (FCT) model FCT-CF6"-60.4-UHV-20:1-H serial number 2426 was tested. Measurements were performed using DG645 pulse generator by Stanford Research Systems, LeCroy digital oscilloscope model 7300A and Agilent network analyzer E5071C.

The FCT time constant measured is 0.13 ns

The upper cut off frequency @ -3 dB is 1.1108 GHz.

Pulse amplitude: $63.9 \text{ mV} \rightarrow 41.6 \text{ mV}$ Signal loss: 34.89%Pulse duration: 50μ s Droop: $0.85\%/\mu$ s

RUPAC 2012, 28 September

Booster NSLS II beam diagnostics

Beam flags Layout

6 beam flags are used to measure transverse beam profile and position in the single-pass mode.

- BR-ISVF2 beam flag is used to adjust the septum and injection kickers;
- BR-DSVF1 to pass the A1 arc;
- BR-XSVF1 and BR-XSVF2 A2 arc and Extraction Section;
- BR-CSVF1 A3 arc and RF Section;
- BR-ISVF1 close turn **BR-XSVF2** BR-XSCX1 BR-XSKIK BR-XSSP2 BR-XSSP1 BR-A2QF2 BR-XSBU1 BR-XSP1 BR-A3QG1 RD-ARCY BR-XSBU2 BR-XSBU BR-XSIP1 BR-XSBU4 BR-XSP2 BR-A3QF1 R-A2P7 BR-A2IP16 BR-XSVF BR-A3P2 BR-XSIP2 BR-A3E SST2 BR-DSIP2 BR-A3CY1 BR-P1A3 BR-A3QD1 BR-A3IP3 BR-DSIP1 BR-CSFT1 BR-A4SF BR-CSDT1 3R-A4CY4 BR-A4IP14 BR-DSST1 BR-DSP1 R-A4IP16 BR-CSP2 BR-A40D2 **BR-DSVF1** BR-A40F2 BR-A4P7 1CY1 BR-A1P1 **BR-CSVF1** BR-ISCX: BR-ISBU1 BR-ISSP1 BR-A1L1, BR-A1IP16 BR-CSCX2 BR-DSCX1 FT BR-A1QF BR-A4QF1 BR-A40G2 BR-ISSP2 BR-IS BR-A4IP1 BR-ISBU3 BR-A1BD1 2.44RD8 **BR-ISVF2** BR-A4BD1

Beam flags Design & Manufacturing (BINP)

- The screen is contained in a UHV-compatible body, which moves in and out as a whole.
- Crystal phosphor YAG:Ce is used.
- The CCD camera is radiation-protected with a lead shield.
- When the beam flag is moved out, the vacuum chamber is smooth.

• 6 beam flags have been manufactured, tested and sent to BNL.

RUPAC 2012, 28 September

Beam flags Beam test (BINP)

The screen sensitivity was experimentally estimated at a BINP operating accelerator facility. A visible image was observed for the 350-MeV electron beam of about $7 \cdot 10^5$ particles (0.1 pC).

Beam flags Linac-LBT experience (BNL)

800

600

400

200

0

1

20.8

₿0.6

볼0.4

90.2

YAG:Ce screen is saturated at beam intensity about 35 pC/mm². OTR from aluminum foil is used for quantitative measurements.

RUPAC 2012, 28 September

SR output ports Layout

One SR output port is located in the 3rd arc and another is close to the DS straight section, in a place with minimal dispersion.

SR output ports Manufacturing (BINP)

• 2 SR output ports have been manufactured and sent to BNL.

RUPAC 2012, 28 September

Optical equipment

Objective lens M118FM25 (Tamron, Japan)

Focal Length	25 mm
Aperture Range	1.6 – 16
Angle of View (hor $ imes$ ver)	16.6 [°] ×12.5 [°]
Focusing Range	0.1 m – ∞
Operation	Manual with lock
Back Focus (in air)	12.92 mm

CCD camera Prosilica CG1290 (Allied Vision Technology, USA)

Resolution	1280 imes 960
Max frame rate at full resolution	32 fps
A/D	12 bit
Output	8/12 bit
Sensor	Sony ICX445
Cell size	3.75 µm
On-board FIFO	16 MB

- 8 CCD cameras and 8 objective lenses have been ordered by BNL.
- To provide noise protection, the non-shielded Ethernet cable is replaced by the shielded cable Belden 7860 ENH.

Tune measurement system Operation

- The kicking method is used.
- The beam is excited by RF pulses with the frequency close to $f_B = (1 v_{x,y})f_0$.
- \bullet Duration of the RF pulse is 100-500 $\mu s.$
- The signal is sampled by an ADC and is processed by a FPGA circuit.
- During the Booster energy ramp T_R , measurements of v_x and v_y are performed with a time interval of about 1 ms.
- For the total ramp duration of 0.3-0.4 s, the system can provide 300-400 tune measurements.

Signal

registration

~270 us

512 turns

2

Beam

excitation

100-200 us

Start

RUPAC 2012, 28 September

 $T_R \sim 0.4 \text{ sec}$

Signal

processing

~500us

4

Elementary cycle

3

 ${\color{red}{\bullet}_{\mathsf{Tec}} \approx 1 \text{ ms}}$

Tune measurement system Striplines

Test bench scheme

Measured sensitivity @ 500 MHz is about 9 V/A; 9 mV (-30 dBm) signal for 1 mA of beam current. Measured scale factors: K_{χ} = 24.4 mm K_{γ} = 26.9 mm.

• 3 stripline assemblies have been manufactured, tested and delivered to BNL.

• 3 E&I 1020L power amplifiers have been purchased by BNL.

RUPAC 2012, 28 September

Tune measurement system Signal processing electronics

• The Signal processing electronics has been manufactured, tested in BINP and delivered to BNL.

• A prototype of the Signal processing electronics has been tested at VEPP-3.

RUPAC 2012, 28 September

Х (частота) 0.1

Beam diagnostic racks

Commissioning steps

	Required beam diagnostics	Esti- mated time	Responsible persons
Pre-commissioning (Hardware & software testing)	All		
LINAC beam optimization	LBT Beam Flags and BPMs		
Passing beam through the septum	LBT BPMs in single-pass mode, Booster flag	2	V.Smaluk, G.Wang
Passing beam through 1st, 2nd, 3rd and 4th arcs	BPMs in single-pass mode, beam flags	8	V.Smaluk
Circulating beam at 200 MeV	BPMs, SR monitors, TMS, DCCT	3	S.Karnaev
Beam-based alignment	BPMs in turn-by-turn and orbit modes	7	S.Sinyatkin, V.Smaluk
Orbit correction	BPMs in orbit mode, DCCT, TMS	3	T.Shaftan, D.Shatilov
Magnet lattice optimization	BPMs, SR monitors, TMS, DCCT	3	S.Sinyatkin, I.Okunev
Injection and hysteresis loop optimization	1 BPM in turn-by-turn mode	2	V.Kiselev, A.Zhuravlev

RUPAC 2012, 28 September

Booster NSLS II beam diagnostics

25

Commissioning steps

	Required beam diagnostics	Esti- mated time	Responsible persons
Turning RF ON; capturing beam	BPMs, TMS, DCCT	3	S.Karnaev, J.Rose
Accelerating beam up the ramp	BPMs, SR monitors, TMS, DCCT	14	S.Sinyatkin, T.Shaftan
Orbit correction at 3 GeV for extraction	BPMs in orbit mode, DCCT, TMS	3	R.Fliller, D.Shatilov
Outgassing	DCCT	20	A.Semenov
Emittance measurement	Beam flags and BPMs in XS	3	O.Meshkov, R.Fliller
Turning ON bumps	BPMs in orbit mode	2	R.Fliller
Turning ON kicker and septum, beam extraction optimization	DTL BPMs and Flags	4	E.Blum, V.Kiselev, S.Karnaev
Beam stacking	FCT, BPMs, DCCT	7	V.Kiselev, T.Shaftan

- Beam passage observation
- Beam current monitoring
- Beam stacking observation
- Closed orbit measurement and correction
- Emittance measurement
- Chromaticity measurement
- Beam parameters monitoring
- Betatron tune measurement
- Analysis of Turn-By-Turn BPM data

LINAC beam optimization

Procedure

Get LINAC beam with required parameters, deliver beam to the injection septum.

Requirements

LBT Beam Flags and BPMs; LINAC beam energy and emittance measurement tools.

LTB Quads Scan for emittiance measurement					
Satur					
{Select Quads} Q2 {Energy} 202.0000 {Scan Steps} 21 Scan {low} 10.0000 Range {high} 20.0000	{Select Flag} VF3BD1 {Select Target} OTR {Image No#} 10 Camera View RUN Abort				
Output INFO: done:/epics/data/HLA_result/2012-5					
Beam pa	rameters at Quad				
{Emit_xG}nm 4.641E1 +/- {Beta_X} m 4.740E1 +/- {Aphla_X} -7.022E0 +/-	2.636E-1 {Emit_yG}nm 0.000E0 +/- 0.000E0 3.119E-1 {Beta_Y} m 0.000E0 +/- 0.000E0 4.572E-2 {Aphla_Y} 0.000E0 +/- 0.000E0 +/-				
1 0.95 1 0.8 1 0.6 1 0.4 1 0 11 12 13	5.05 Average V been 4.8 4.6 4.4 4.4 4.4 3.8 4.6 4.4 4.4 3.8 14 3.5 4.15 3.5				

Output

Passing beam through the septum

Procedure

Measure transport matrix. Optimize beam position at BPMs. Use upstream Beam Flag to align the system.

Requirements

LBT correctors and BPMs; 1 LBT flag and 1 Booster flag; Operation with PSCs. Beam diagnostic software.

Procedure

Adjust currents of LBT correctors to change initial coordinates. Use 7 arc correctors. Send flat ramp tables into them, adjust currents. Measure transport efficiency & beam coordinates at BPMs. Repeat *N* times, optimize until transport efficiency > 95%.

Requirements

9 Booster BPMs in single-pass mode,

2 Booster flags; Operation with PSCs. Beam diagnostic software.

The same procedure is for passing through 2nd, 3rd and 4th arcs

RUPAC 2012, 28 September

Booster NSLS II beam diagnostics

Thank you for your attention!