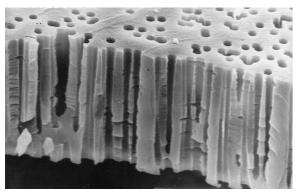
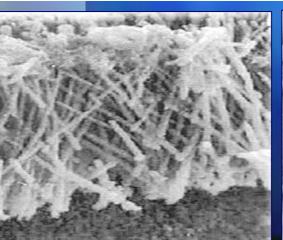
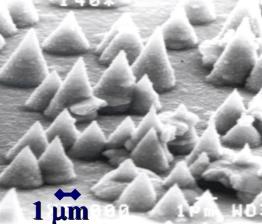
FLNR Heavy Ion Cyclotrons for Investigation In the Field of Condensed Matter Physics and Industrial Applications


B. N. Gikal

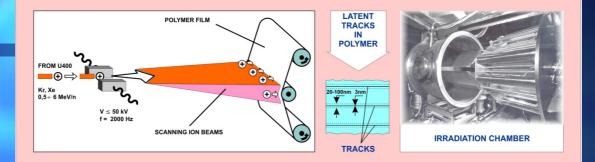
Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, Russia

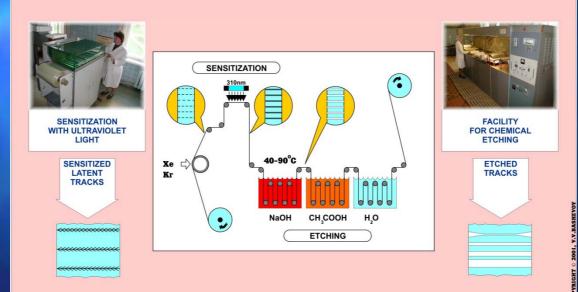

Interaction of heavy ions with matter


Scientific aspects of radiation damage and formation of ion tracks in solid materials.

- ≻lon implantation.
- ➤Use of nuclear track technology:
 - * track membrane production

Synthesis of three-dimensional structures in solid materials

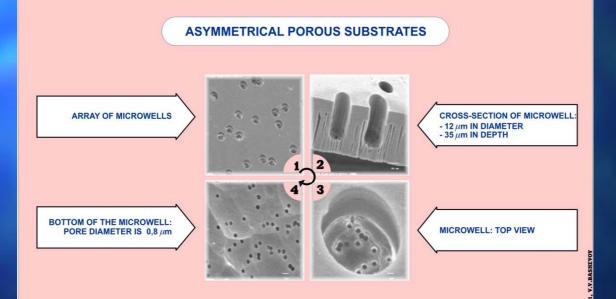




Track membrane production technology

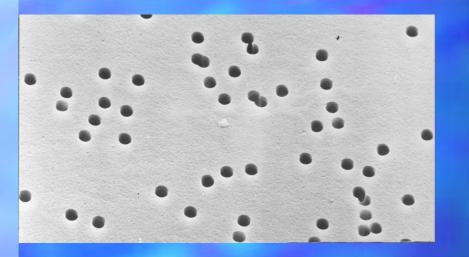
I. IRRADIATION WITH ACCELERATED HEAVY IONS

II. SENSITIZATION AND CHEMICAL ETCHING

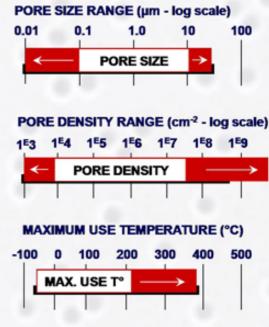


FLEROV LABORATORY OF NUCLEAR REACTIONS JOINT INSTITUTE FOR NUCLEAR RESEARCH

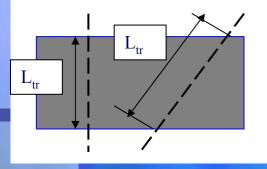
Track membrane production technology

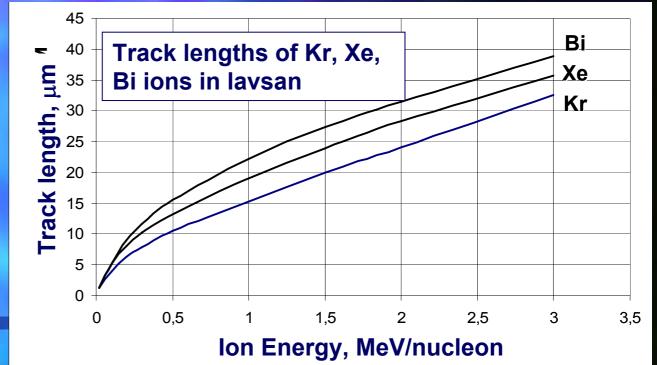

I. TRACK MEMBRANES WITH VARIOUS PORE SHAPES

FLEROV LABORATORY OF NUCLEAR REACTIONS JOINT INSTITUTE FOR NUCLEAR RESEARCH


TRACK MEMBRANES

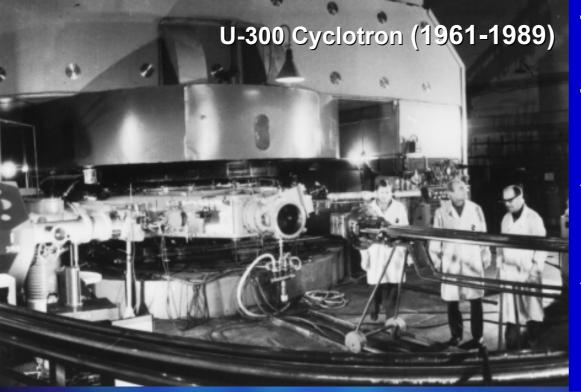
PROPERTIES:
Pore density - (10⁵ – 1.4x10¹⁰) pores/cm²
Pore diameter 0.01 - 20 microns
Membrane material:
Polycarbonate and polyethylene terephthalate - the most widespread.
Polypropylene and polyvinylidene fluoride - for filtration of aggressive technological substances.
Polyimide - unique thermal and radiation resistance.


APPLICATION:


Medicine Biology Industry

Track membrane production technology

Choice of ion energy for polymer film irradiation


Film thickness		12 μm	19 μm	21 μm	30 µm
Energy of ions at perpendicular	Kr (MeV/n)	0.7	1.4	1.6	2.7
irradiation	Xe (MeV/n)	0.4	1.0	1.2	2.2
Energy of ions at irradiation at 15 °	Kr (MeV/n)	0.75	1.45	1.66	2.8
	Xe (MeV/n)	0.45	1.05	1.25	2.3
Energy of ions at irradiation at 30 °	Kr (MeV/n)	1.0	1.8	2.0	3.2
	Xe (MeV/n)	0.6	1.25	1.5	2.7

HEAVY ION ACCELERATORS FOR TRACK MEMBRANE PRODUCTION AND POLYMER MODIFICATION

Applied research on heavy ion beams are carried out in many scientific centres of the world. Some of the developed technologies are successfully used in industry, for example, a well-known method of track membrane production using heavy ion beams, which as a rule have an energy from 1 to 3.5 MeV/nucleon.

- USA, Brookhaven National Laboratory
- France, GANIL,
- Belgium, (CYCLONE) Cyclotron of L'Ouvain la Neuve
- Germany, GSI
- Japan, Takasaki, JAERI, AVF cyclotron
- many other scientific centers

HEAVY ION ACCELERATORS FOR TRACK MEMBRANE PRODUCTION AND POLYMER MODIFICATION U-300 Cyclotron

- U-300 was created in D.V. Efremov Institute

- U-300 was in operation at FLNR JINR from 1961 to 1989.

- The specialized channel for an irradiation polymer films at the accelerator has been created in the middle of 70th years.
- Beams of Xe ions with 1MeV/nucl energy were used for manufacture of track membranes and research task.

The track membrane technology has been developed on the basis of heavy particles registration by plastic detectors.

1. Флеров Г.Н., Барашенков В.С. Практическое применение пучков тяжелых ионов. УФН, 1974, 114, №2, 351

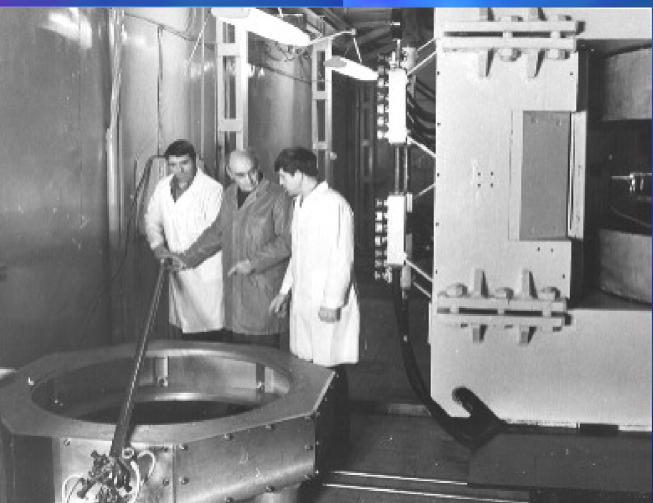
2. Агапьев Г.Н., Барашенков В.С., Самойлова Л.И., Третьякова С.П., Щеголев В.А. К методике изготовления ядерных фильтров. Деп. Публикация ОИЯИ, Дубна, 1074, Б1-14-8214.

HEAVY ION ACCELERATORS FOR TRACK MEMBRANE PRODUCTION AND POLYMER MODIFICATION

FLNR JINR

Cyclotron U-400 (1978)

Beams of Kr, Xe, Bi ions with an energy of 2.5-5 MeV/n are used for track membrane production.

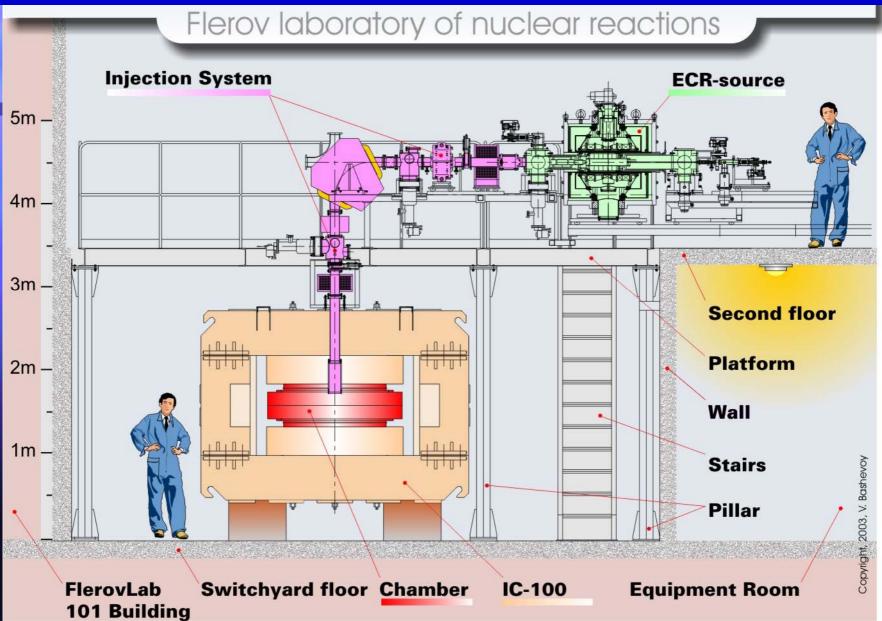

The irradiation chamber provides an opportunity of processing polymer films with a width of up to 60 cm

1500 kW - power consumption

SPECIALIZED HEAVY ION CYCLOTRONS for production of track membranes and industrial use in the field of nanotechnologies

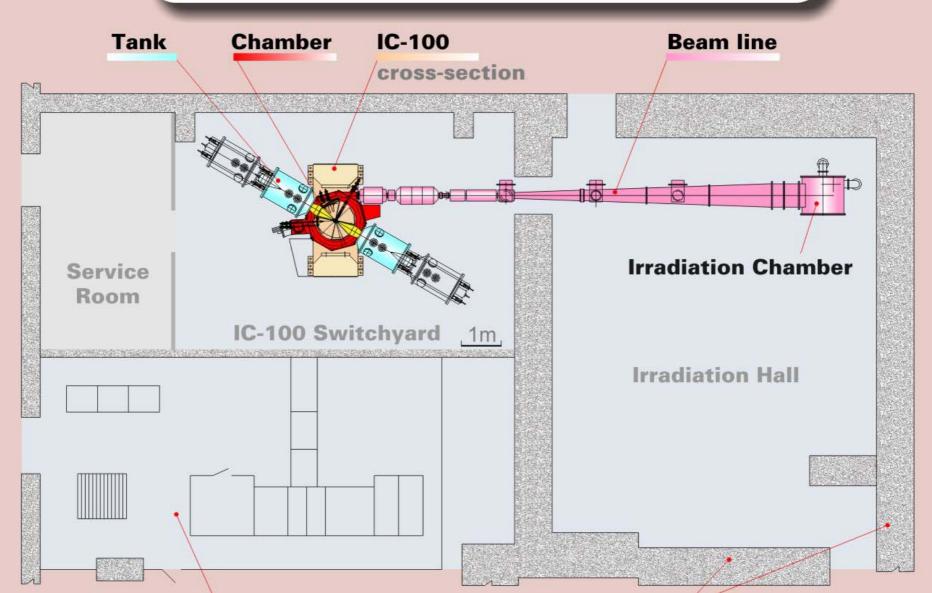
IMPLANTING CYCLOTRON IC-100 History pages 1985

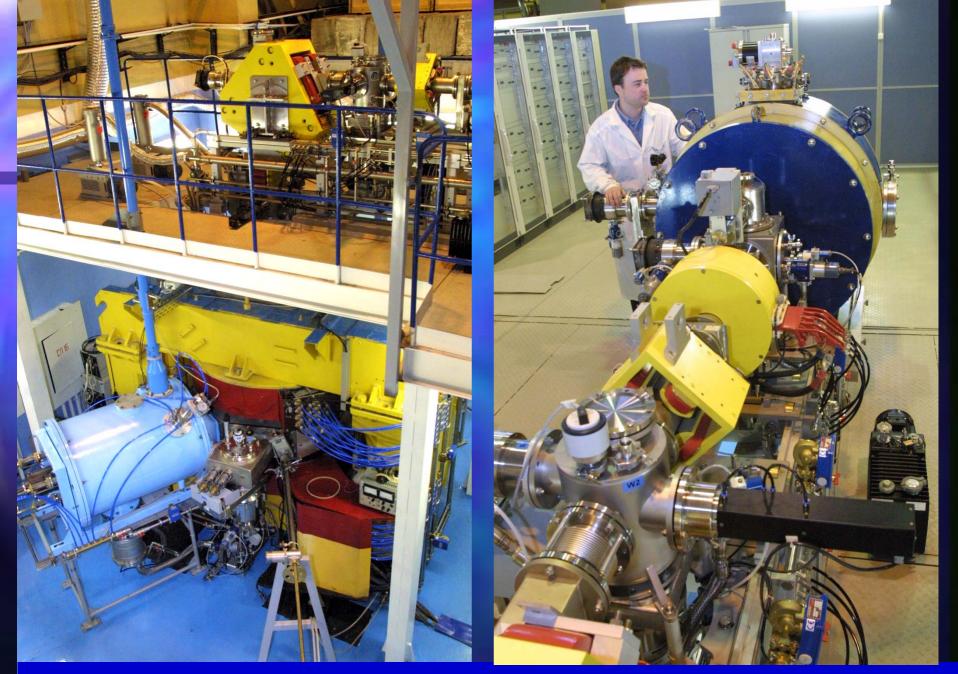
The first dedicated cyclotron for production of track membranes (nuclear filters)


Energy of ions: ~ 1.2 MeV/nucleon.

Internal ion source - PIG

Accelerated ions: C - Ar (A/Z = 5.7-6)


Beam intensity of Ar - 1 μ A


Reconstruction of IC-100 cyclotron (2001-2002)

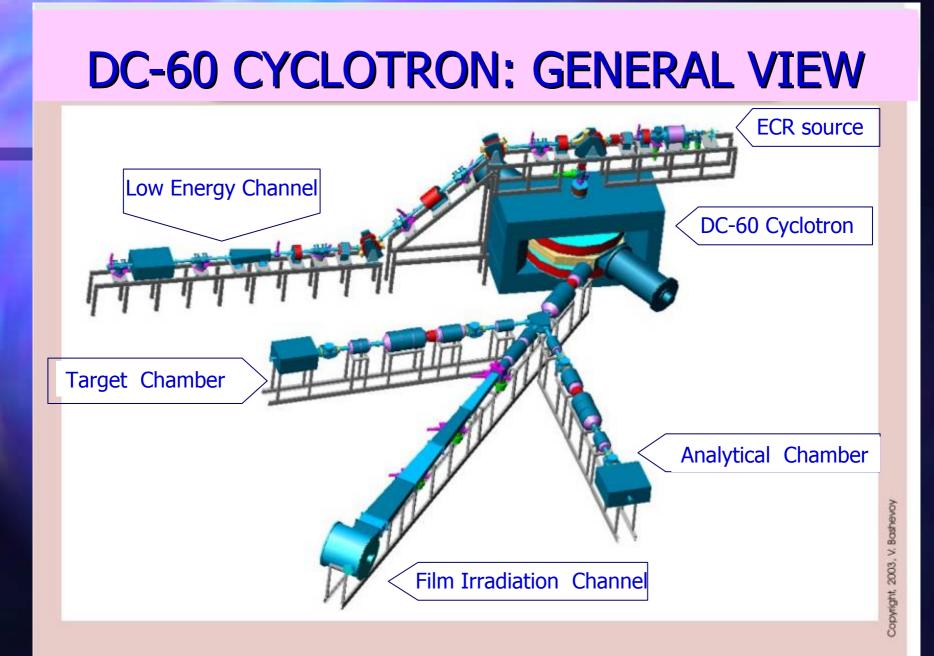
Reconstruction of IC-100 cyclotron (2001-2002)

Flerov laboratory of nuclear reactions

Reconstruction of IC-100 cyclotron (2001-2002)

Intensity of accelerated and extracted ion beams (IC-100 cyclotron, February 2007).

Element	Ion	A/Z	F _{RF} MHz	Target beam current in the experiments	Maximum beam current
Neon	$^{22}Ne^{+4}$	5.5	20.160	0.7 µA	
Argon	$^{40}Ar^{+7}$	5.714	20.200	2.5 µA	
Iron	⁵⁶ Fe ⁺¹⁰	5.6	20.240	0.5 µA	
Krypton	⁸⁶ Kr ⁺¹⁵	5.733	20.200	3.5 µA	3.5 µA
Iodine	$127I^{+22}$	5.773	20.200	0.25 μA	
Xenon	132 Xe $^{+23}$	5.739	20.180	3.7 µA	3.7 µA
Xenon	132 Xe ⁺²⁴	5.5	20.180	0.6 µA	
Tungsten	182 W +32	5.6875	20.142	0.015 µA	0.015 µA
Tungsten	184 W +31	5.9355	20.142	0.035 µA	0.035 μA
Tungsten	184 W +32	5.75	20.142	0.017 µA	0.017 µA


DC-60 CYCLOTRON

DC-60 has been developed and created at FLNR JINR (2004 - 2006) for Research Center in L.N. Gumilev Euroasian State University in Astana, Kazakhstan

MAIN OBJECTIVES:

- Scientific research
- Education of students
- Production of track membranes with special properties
- Creation of micro- and nanosructures
- Surface modification of standard materials, creation of new materials with required properties

DC-60 CYCLOTRON MAIN PARAMETERS

Ion beam injector	ECR ion source + axial injection system
Magnet pole diameter	1.62 m
Cyclotron magnetic field	1.45 T- main mode1.25÷1.65 T- magnetic field variation
RF system: - frequency - harmonic number - dee voltage	11.00 ÷ 17.5 MHz 4 and 6 50 kV
Pressure in cyclotron vacuum chamber	1÷2·10 -7 Torr

DC-60 CYCLOTRON MAIN PARAMETERS OF ACCELERATED ION BEAMS

Ions	Li ÷ Xe
Mass to charge ratio A/Z	6 ÷ 12
Energy of accelerated ions	0.35 ÷ 1.77 MeV/nucleon
Energy spread	2 %
Discrete change of ion energy	Due to A/Z ratio
Smooth energy variation with respect to nominal energy	-25 % / +25% Due to magnetic field variation

DC-60 CYCLOTRON LOW ENERGY ION BEAM PARAMETERS

Ions	He ÷ Xe
Mass to charge ratio (A/Z)	2 ÷ 20
Ion energy from ECR source	10 ÷ 20 keV*charge
Energy spread	0.1 %
Discrete ion energy change	Due to change of A/Z
Smooth ion energy variation	Due to extraction potential variation in ECR source

DC-60 CYCLOTRON

RF system of DC-60 cyclotron

 Bimetallic resonators – copper plated stainless steel

- Copper balls used as contacts on shorting plate

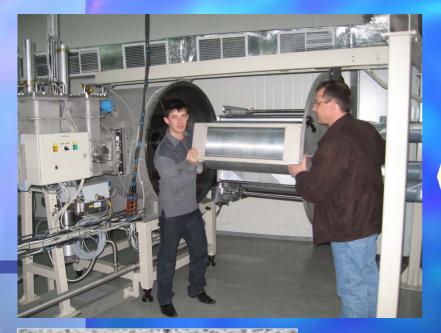
VACUUM SYSTEM

Pumping units	Turbomolecular pumps	Cryogenic pumps
Axial injection channel and low energy beam channel	5 units - 150 l/s	4 units - 800 l/s
Cyclotron chamber	2 units - 150 l/s 4 units - 500 l/s	2 units - 5000 I/s
Extracted beam channels	7 units - 100 l/s	-
Dedicated channel for irradiation of polymer films	4 units - 500 l/s	-

Vacuum	Design	Received
Axial injection channel and low energy beam channel	1 .10 ⁻⁷ Torr	(6-9) ·10 ⁻⁸ Torr
Cyclotron chamber	(1-2) ·10 ⁻⁷ Torr	5 ·10 ⁻⁸ Torr
Extracted beam channels	5 ⋅10 ⁻⁶ Torr	5 ·10 ⁻⁷ Torr

Pumping of cyclotron chamber 1 stage - for-vacuum pumps - ~ 10⁻³ Torr 2 stage – turbo-molecular pumps - (1÷2) ·10⁻⁶ Torr

3 stage - cryogenic pumps - (5) ·10⁻⁸ Torr



DC-60 CYCLOTRON EXPERIMENTAL RESULTS

Accelerated Ion Beams (December 2006)

Ion	A/Z	Ion energy MeV/nucleon	Magnetic field, T	Beam current, μA, at internal radius R=120mm	Beam current, μA, at extraction radius R=680mm
¹⁴ N ²⁺	7	1	1.42	10.5	10
¹⁴ N ²⁺	7	1.05	1.47	1.86	1.7
¹⁴ N ²⁺	7	1.32	1.64	1.62	1.46
²⁰ Ne ³⁺	6.67	1.03	1.4	2.2	2
²² Ne ²⁺	11	0.38	1.4	1.85	1.77
⁴⁰ Ar ⁴⁺	10	0.65	1.64	1.5	1.4
⁴⁰ Ar ⁵⁺	8	0.58	1.25	0.98	0.64
⁴⁰ Ar ⁵⁺	8	0.98	1.63	0.61	0.52
⁴⁰ Ar ⁶⁺	6.67	1.06	1.4	2	1.85
⁴⁰ Ar ⁷⁺	5.71	1.14	1.25	1.92	1.83
⁸⁴ Kr ⁺¹²	7	1	1.42	2.72	2.48

Track membranes produced at DC-60

- Irradiation by ⁸⁴Kr ion beam

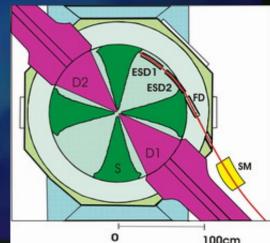
- Energy of ions 1.0 MeV/nucleon.
- Full current of the beam 0.1 μ A
- Speed of film transport 5 cm/sec
- The size of the beam on the target: Vertical 100 mm Horizontal 30 mm
 Beam scanning frequency- 100 Hz

PARAMETERS OF A TRACK MEMBRANE

- Film thickness
- Pore diameter
- Pore density
- Non-uniformity of pore density across the width and length of the film
- Pore axis angle to surface normal

- 12 microns
- 0.38 0.4 microns
 - 2.10⁸ pores/cm²
 - ±5 % 0±15°

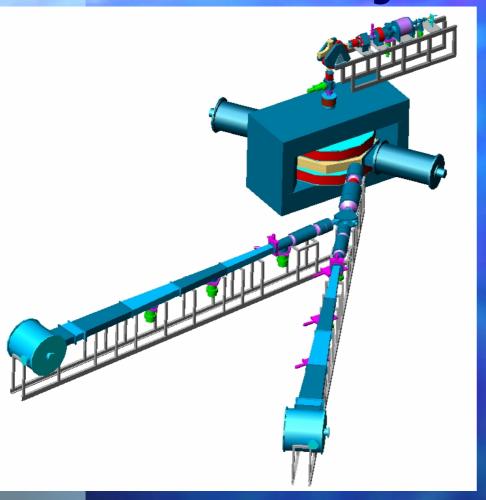
"Alpha" Film Irradiation Complex on the basis of CYTREC cyclotron


The ALPHA industrial complex constructed for industrial track membrane production.

Base installation - cyclotron CYTREC (start August 2002) is developed at the Laboratory of Nuclear Problems, JINR.

✤ Accelerated ions - Ar with a fixed energy – 2.4 MeV/nucleon

DC-110 Heavy Ion Cyclotron for track membranes production for "BETA" industrial complex


> Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, Russia

REQUIREMENTS TO CYCLOTRON

 Manufacture of track membranes on the basis of polymer films with thickness up to 30 microns.

- The cyclotron should accelerate beams of ions Ar, Kr, Xe with the fixed energy 2,5 МэВ/нукл., beam intensity ~ 1 рµА (6.10¹² particles / sec)
- The equipment should be simple and reliable.
- Operating time in a mode of an film irradiation 7000 hours/year.
- The beginning of the project August 2009.

DC-110 Cyclotron Complex

DC-110 Cyclotron

- ECR type external ion source.
- Beam axial injection system

2 channels for accelerated ion beams

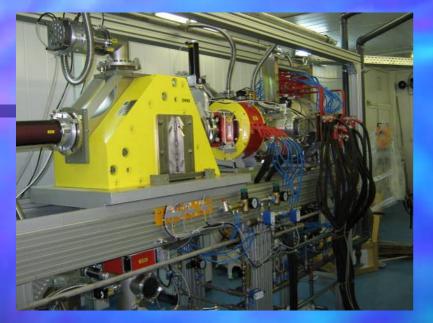
- Technological equipment
 - vacuum system
 - power supply and control systems
 - cooling system
 - RF system

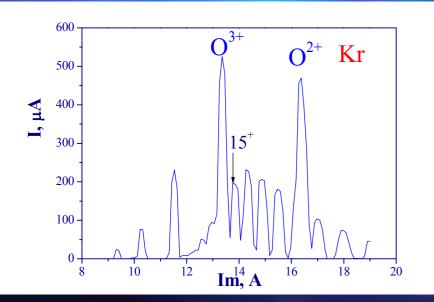
DC-110 Cyclotron has been developed on the basis of the DC-60 cyclotron design, created at the FLNR and successfully commissioned in Astana in 2006.

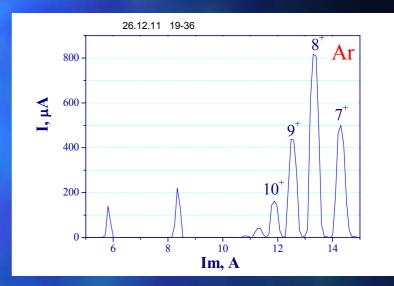
JON SOURCE (comparison of characteristics)

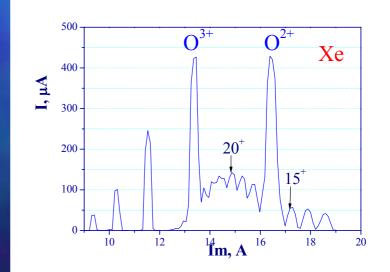
Accelerated ions	⁴⁰ Ar ⁶⁺	⁸⁶ Kr ¹³⁺	¹³² Xe ²⁰⁺		
Mass to charge ratio of ions A/Z	6.667	6.615	6.60		
Injection voltage	20 keV	20 keV	20 keV		
Intensity of injected ion beam in a routine operation	20 ρμΑ (max 40 ρμΑ)	5 ρμΑ (max 10 ρμΑ)	1 ρμΑ (max 2 ρμΑ)	«room temperature»	
Intensity of extracted ion beam at full efficiency of 10 %	2 pμA 12 μA	0.5 pμA 6,5 μA	0.1 pμA 2 μA	ECR 14 GHz 60 kW - power consumption	
Intensity of injected ion beam in a routine operation	25 ρμΑ (max 50 ρμΑ)	15 ρμΑ (max 30 ρμΑ)	5 ρμΑ (max 10 ρμΑ)	«room temperature»	
Intensity of extracted ion beam at full efficiency of 10 %	2,5 p μ A 15 μA	1.5 pμA 20 μA	0.5 pμA 10 μA	ECR 18 GHz 150 kW -power consumption	
Intensity of injected ion beam in a routine operation	25 ρμΑ (max 50 ρμΑ)	15 ρμΑ (max 30 ρμΑ)	10 ρμΑ (max 15 ρμΑ)	Superconducting	
Intensity of extracted ion beam at full efficiency of 10 %	2.5 p μ A 15 μA	1.5 pμA 20 μA	1.0 pμA 20 μA	60 kW - power consumption	

Main parameters of *DC-110* cyclotron.


Accelerated ions	⁴⁰ Ar ⁶⁺	⁸⁶ Kr ¹³⁺	¹³² Xe ²⁰⁺	
Mass to charge ratio of ions A/Z	6.667	6.615	6.60	
Ion energy – 2.4 MeV/nucleon	2.5	2.5	2.5	
Beam intensity, pps	6·10 ¹² (*)	6·10 ¹²	3·10 ¹²	
MAGNETIC SYSTEM				
Pole diameter, m	2			
Average magnetic field B ₀ , [T]	1.683	1.670	1.666	
Increasing average magnetic field at final radius ΔB ,[Gs]	45	45	45	
RF SYSTEM				
Revolution of ions, F _{ion} , [MHz]	3.877	3.877	3.877	
Harmonic number	2	2	2	
Frequency of RF system F _{RF} , [MHz]	7.754	7.754	7.754	
lon source	SC ECR, 18 GHz			
Extraction system	Electrostatic deflector			


DC-110 cyclotron (Commissioning stage September 2012)




ECR ion source of DC-110

Ions	⁴⁰ Ar ⁶⁺	⁸⁶ Kr ¹³⁺	¹³² Xe ²⁰⁺
Project intensity	190 eµA	210 eµA	150 eµA

Efficiency of ⁸⁴Kr ¹²⁺beam acceleration at DC-60 cyclotron

ION	5		eam current, eµA	Extracted beam current,	Beam current at target,
	eμA	R= 120 mm	R= 680 mm	eμA	еµА
⁸⁴ Kr ¹²⁺	11.4	2.7	2.5	1.65	1.65
	22% (30-4 0	0% DC-110)			
		92%			
			66%	%	
				100%	
	14.5% (20-25% DC-110)				

SPECIALIZED HEAVY ION CYCLOTRONS (JINR)

for production of track membranes and industrial use in the field of nanotechnologies

HEAVY ION CYCLOTRONS	Accelerated ions	lon energy	Intensity of extracted beam
IC-100 (1986)	Ar,	1,2	0,4 ρμΑ
FLNR JINR	Kr, Xe,	MeV/nucl	0,2 рµА
(developed at the Laboratory of Nuclear Reactions, JINR)	I, W		0,05 pµA
DC-60 (2006)	C - Xe	0,35 – 1,7	10 – 0,1 pμA
in Astana, Kazakhstan		MeV/nucl	
(developed at the Laboratory of Nuclear Reactions, JINR)			
CYTREC (2002)	Ar	2,4	0,03 pµA
"Alpha", Dubna, Russia		MeV/nucl	
(developed at the Laboratory of Nuclear Problems, JINR)			
DC-110 (commissioning-2012)	Ar,	2,5	1 ρμΑ
"BETA", Dubna, Russia	Kr,	MeV/nucl	1 ρμΑ
(developed at the Laboratory of Nuclear Reactions, JINR)	Xe,		0,5 ρμΑ

Single-Event Effects (SEE) Testing at FLNR Cyclotrons

The Russian Space Agency (**Roscosmos**) carries out investigations of single-event effects (SEE) in electronic devices using ion beams of U-400 and U-400M.

• U400 cyclotron delivers beams of ions with atomic masses of 4÷209 at energies of 3÷29 MeV/nucleon.

• U400M cyclotron was intended for acceleration of ion beams in two modes:

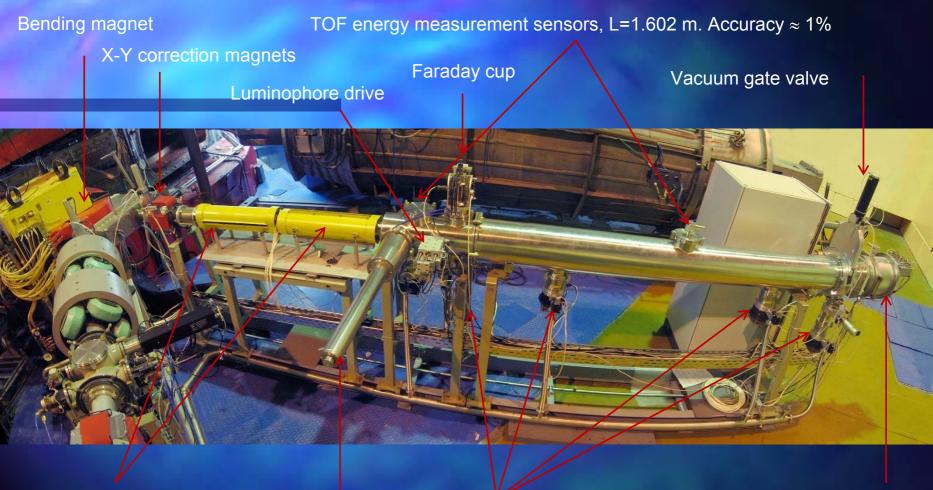
- acceleration mode of high energy ions - 19-53 MeV/nucleon (mass to charge ratio of accelerated ions A/Z = 2.8 - 5),

- acceleration mode of low energy ions - **5–10** MeV/nucleon (mass to charge ratio of accelerated ions A/Z = 7-10).

• Now lons of **O**, **Ne**, **Ar**, **Fe**, **Kr**, **Xe**, **Bi** with an energy of **3**÷6 **MeV/nucleon** are available to users.

• At the end of 2012 the installation of the channel will be finished for testing at high energy ion beams.

• Beams of ions from C up to Xe with energies from 25 to 53 MeV/nucleon will be available for carrying out experiments.



U-400M

U-400

Ion Beam Line for SEE Testing

X-Y scanning system (50 Hz)

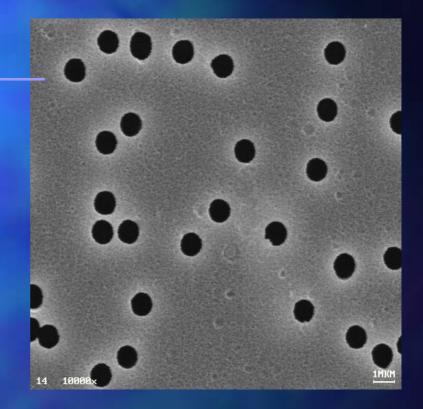
Ta foils (5-27 μm) drive)

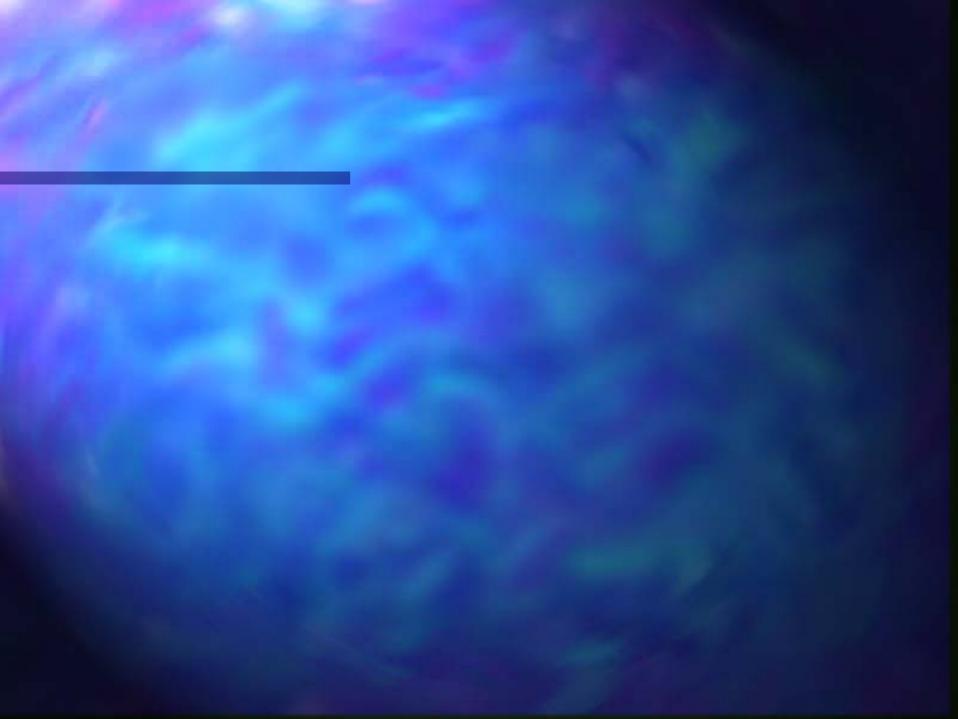
Turbo molecular pumps

Test chamber

ION BEAM PARAMETERS USED FOR SEE TESTING

Ion type	Energy, MEV	LET, MeV/(mg/cm ²)	Ion flux, cm ⁻² s ⁻¹
¹⁶ O	56±3	4.5	
²² Ne	65±3	7	
⁴⁰ Ar	122±7	16	1 ÷ 10 ⁵
⁵⁶ Fe	213±3	28	
⁸⁴ Kr	240±10	41	
¹³⁶ Xe	305±12	67	
²⁰⁹ Bi	490±10 (820±20)	95 (100)	


Test chamber and diagnostic equipment


ION BEAM DIAGNOSTIC

Polymer track detector and the DUT

SEM micrograph of polymer track detector

