

Development of Mobile Electron Accelerator for Environmental Applications

2012.09.25

Bumsoo Han, EB TECH Co., Ltd Korea N.K. Kuksanov, BINP Novosibrsk Russia

Major emerging issues identified in the survey (beginning of 2000)

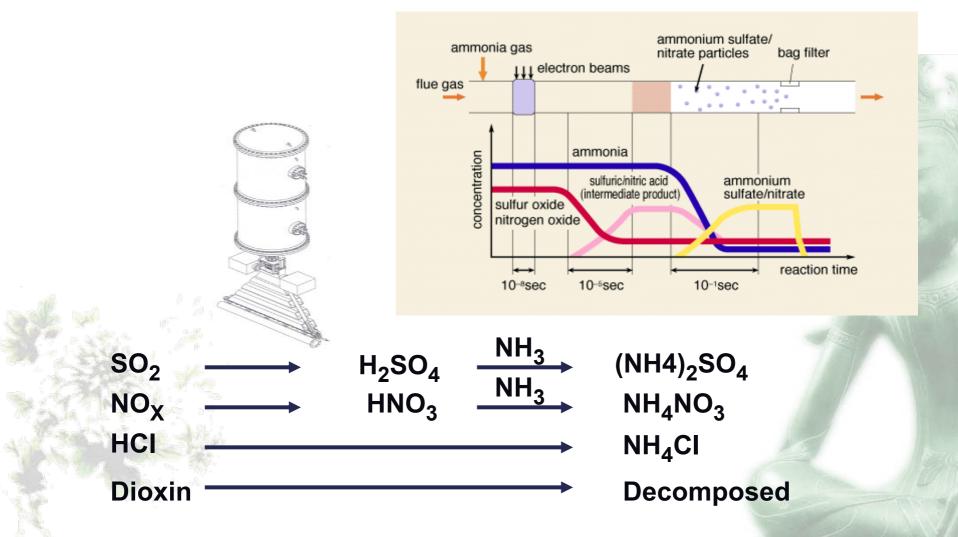
The UN Millennium Development Goals

Accelerator Technology for Pollution Control

Flue gas Purification

Wastewater Treatment

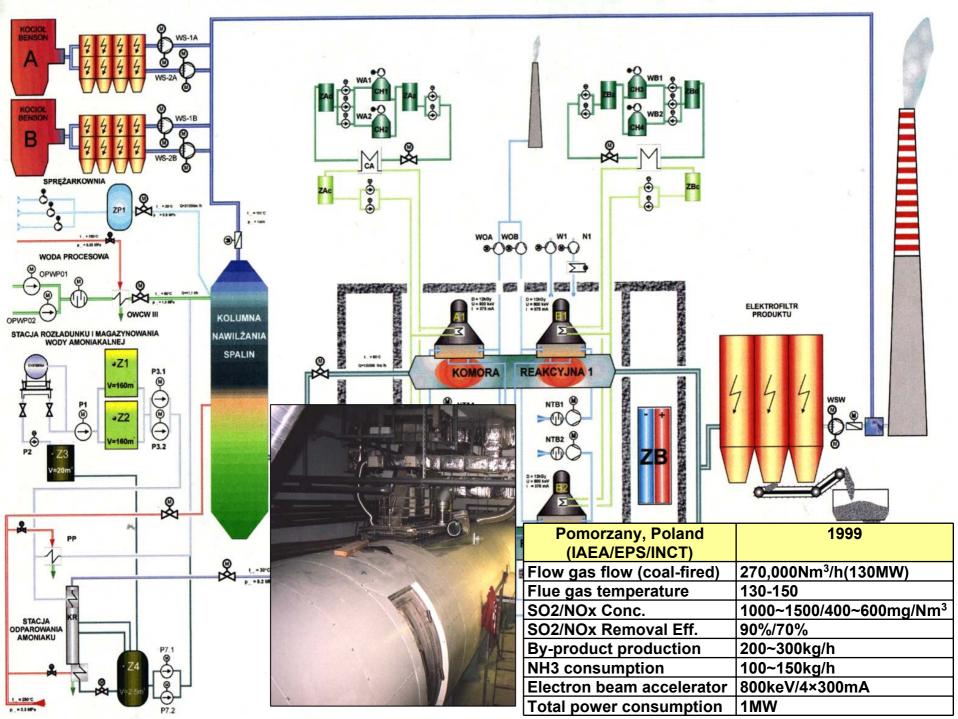
Sludge Hygienization



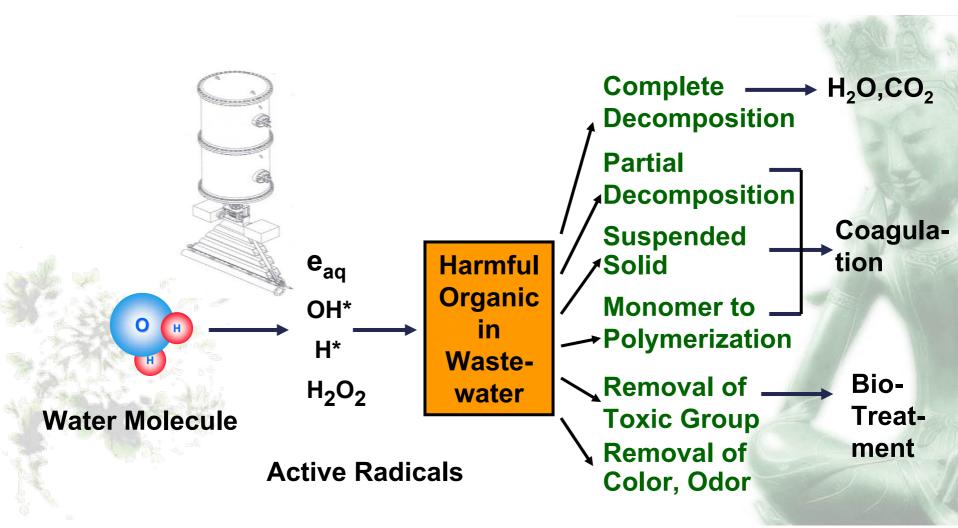
Technical Advantages of electron beam process

- *. Electron Beam Technology is Eco-friendly technology
 - -. No secondary waste generation
 - -. No catalysts, no heating and easy for automation.
- *. Experienced in pilot plant and several industrial plants
- *. Economical Advantages in capital cost and O & M cost
- *. For flue gas treatment and sludge treatment, by-products are useful for fertilizer.

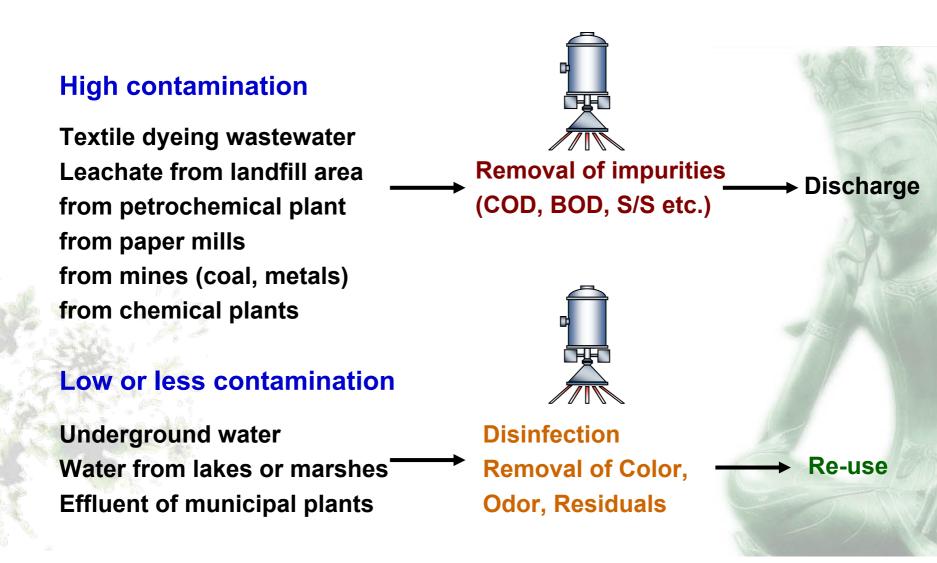
Principles of Flue Gas Purification with Electron Beam



EB Flue Gas Treatment Plant Installations in the World

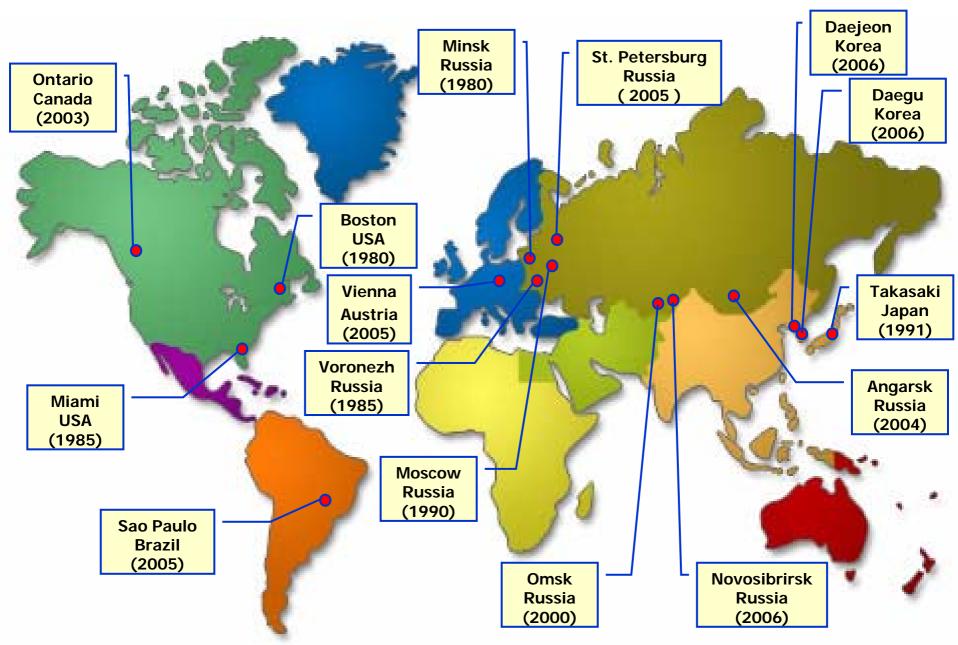

Place	Flow rate (Nm ³ /hr)	Power (MW)	Accelerator	Dose (kGy)	SO ₂ /NOx (ppm)
Indianapolis,USA(1984)	24,000	-	800keVX2, 160kW	30	1,000/400
Badenwerk,Germany(1985)	20,000	-	300keV, 180kW	-	500/500
Kawęczyn, Poland (1992)	20,000	-	700keV, 50kW	18.8	600/250
Nagoya, Japan (1992)	12,000	-	800 keVX3, 108kW	10.5	1,000/300
Chengdu, China (1997)	300,000	90	800keVX2, 400mA 1900kW	3	1,800/400
Pomorzany, Poland (1999)	270,000	112	800keVX4, 375mA, 1200kW	10	385/340
Nisi-Nagoya,Japan(1998)	620,000	220	800 keVX6, 500mA, 2400kW	6.7	11-
Hangzhou, China (2002)	305,400	-	800keVX2, 400mA 1896kW	3	1,800/400
Beijing, China (2005)	640,000	150	1000keVX2, 500mA, 1000keV/300mA, 2850kW	C	1,900/400
Svishtov, Bulgaria (2008)	600,000	120	0.9MeV/400mAx4, 1400kW	4	1680/780

EPS Pomorzany - general view



Principles of Wastewater Treatment with E-Beam

Types of Water/Wastewater Treatment



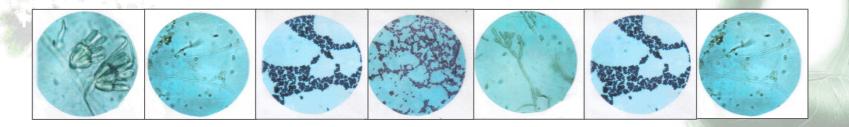
Application of e-beam on water/wastewater treatment

- -. Wastewater from Textile Dyeing Companies
- -. Wastewater from Papermill
- -. Leachate from Sanitary Landfill
- -. Wastewater containing Heavy metals (Cd,Hg,Pb,Cr⁺⁶)
- -. Re-use of effluent from municipal wastewater plant
- -. Remediation of contaminated water (PCB, Explosives)
- -. Contaminated Underground water
- -. Drinking water

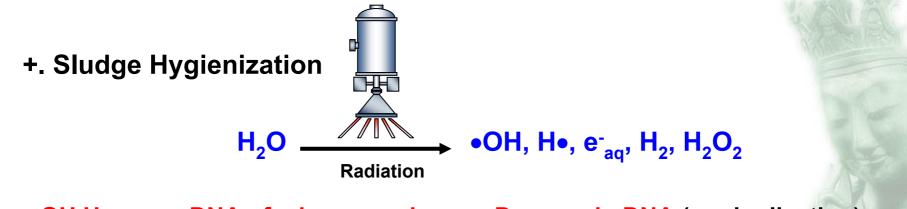
Water/Wastewater treatment plant

15

Industrial Electron Beam Wastewater Treatment Plant in Daegu, Korea


Sludge Hygenization

- The solid waste in sewage is typically organic in nature and is broken down in the sewage treatment plants resulting in sewage *sludge* as a byproduct.

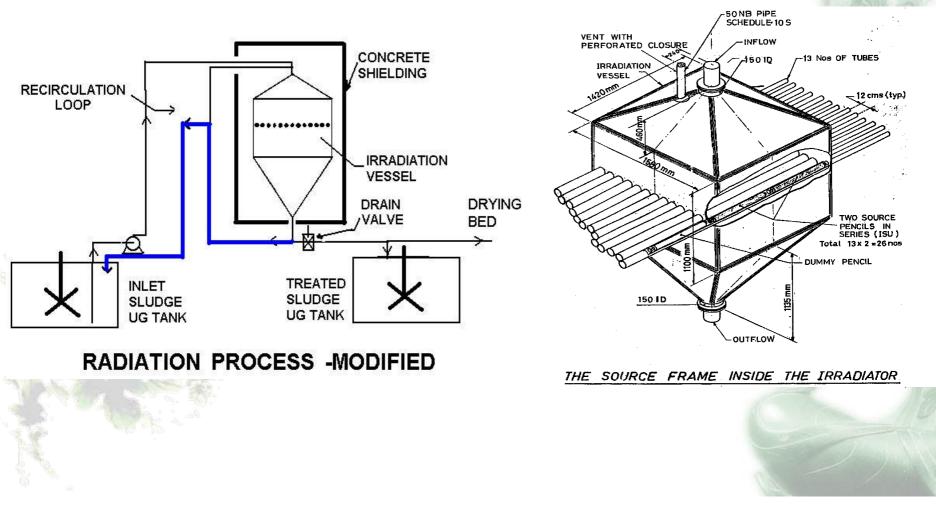

Typical pathogens present in sludge

Microorganism	Concentration per 100 ml
Coliforms	10 ⁷ – 10 ⁹
Fecal Coliforms	10 ⁶ – 10 ⁸
Fecal Streptococci	10 ⁶ – 10 ⁷
Salmonella	1 - 100
Anaerobic spore formin	a bacteria

E-Beam Sludge Treatment

19

•OH,H•, e_{aq}^{-} , + DNA of microorganism \rightarrow Damage in DNA (no duplication)



Pilot and Commercial Sludge Treatment Plants

20

Facilities	Irradiation Source	Irradiated material	Operation condition	Remarks
Munich, Germany (1973~1984)	Gamma-ray(60Co) 0.57Mci	Liquid Sewage sludge, 145m3/day	2-3kGy,	Commercial plant
New Maxico, USA (1978)	Gamma-ray(137Cs) 0.9MCi	Sewage sludge cake 22-90t/day	10kGy	Pilot Plant Conveyor
Vadodara, India (1989)	Gamma-ray(60Co) 0.5Mci	Liquid Sewage sludge, 110m³/day(4%SS)	3-5kGy	Commercial plant
Tucuman, Argentina (1998)	Gamma-ray(60Co) 0.7Mci	Liquid Sewage sludge, 180m³/day(8-10%SS)	3kGy	
Weldel, Germany (1980)	Electron beam 50kW(1.0MeV, 50mA)	Liquid Sewage sludge 500m ³ /day	4kGy	Incline plan reactor
Verginia Key Florida, USA(1984)	Electron beam(ICT type) (75kW/1.5MeV/50mA)	Liquid Sewage sludge, 645m ³ /hr, 4%ss	4kGy 10mm-thick	Pilot plant
Takasaki, Japan (1991)	Electron beam (Cockcroft-walton) (15kW/2MeV/15kW)	Sewage sludge cake 300kg/h	5kGy 1-10mm thick	Conveyor/Nozzle
Sao paulo, Brazil (1993)	Electron beam 25kW(1.5MeV, 25mA)	Liquid Sewage sludge 3m ³ /hr	3kGy	Pilot Plant
Warsaw, Poland (1994)	Electron beam(LAE13/9) (10MeV, 15kW)	Sewage sludge cake, 70t/day	5-7kGy 2-3cm thick	Design Works
Daejeon, Korea (2005)	Electron beam 40kW(1.0MeV, 40mA)	Dewatered Sludge	1~3kGy 6mm thick	Pilot scale

21 Gamma ray Sludge Hygenization Process_at India

Sewage Sludge Treatment (ISRAEL)

Why e-beam processes are not widely used?

Barriers for Industrial Application

- -. Public Acceptances
- -. Technical problems

Uneasy for the Radiation Safety New Species by Radiation Reliability for year-round operation Analysis of by-product, Toxicity

- -. Regulation from Authorities
- -. Competition with Other processes (Economics)

Difficult to beat the conventional processes High investment cost and long returns No Alternatives or by-passes for shut-down Not universal for all environmental plant Difficult to find BP

-. Scaling up from Lab. to Industrial Implementation

High cost for Pilot Plant Construction XXIII RUSSIAN PARTICLE ACCELERATORS CONFERENCE RuPAC-2012 September 24 – 28, 2012, St. Petersburg, Russia

Why e-beam processes are not widely used ?

Barriers for Industrial Application

- -. Public Acceptances
- -. Technical problems

Uneasy for the Radiation Safety New Species by Radiation Reliability for year-round operation Analysis of by-product, Toxicity

-. Regulation from Authorities

-. Competition with Other processes (Economics)

Difficult to beat the conventional processes High investment cost and long returns No Alternatives or by-passes for shut-down Not universal for all environmental plant Difficult to find BP

-. Scaling up from Lab. to Industrial Implementation

Radiation process (e-beam, y-ray etc.) can survive only when it has **Technical & Economical** advantages over existing processes.

26

Radiation processing should be

Better & Cheaper to other processes.

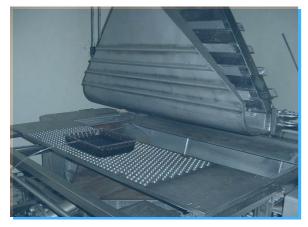
Why e-beam processes are not widely used ?

Barriers for Industrial Application

- -. Public Acceptances
- -. Technical problems

Uneasy for the Radiation Safety New Species by Radiation Reliability for year-round operation Analysis of by-product, Toxicity

-. Regulation from Authorities


-. Competition with Other processes (Economics)

Difficult to beat the conventional process High investment cost and long returns No Alternatives or by-passes for shut-do in Not universal for all environmental plant Difficult to find BP

-. Scaling up from Lab. to Industrial Implementation

High cost for Pilot Plant Construction XXIII RUSSIAN PARTICLE ACCELERATORS CONFERENCE RuPAC-2012 September 24 – 28, 2012, St. Petersburg, Russia

Lab. Scale Experiments (1~50m³/day)

Pilot scale Experiments (500~1,000m³/day)

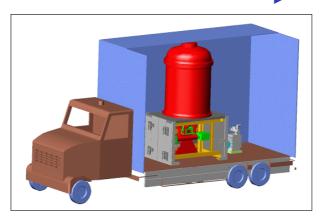
-. Cost

-. Space

-. O & M etc.

29 Industrial scale Wastewater Plant (10,000m³/day)

Lab. Scale Experiments XXIII1RUS99AMPARTICLE ACCELERATORS CONFERENCE POPPO2012 September 24 – 28, 2012, St. Petersburg, Russia


Construction Cost for Pilot Plant

Туре	Capacity	Main facility	Others		Total
Liquid	500~1,000m³/ d with 1~5kGy	accelerator (50kW) 0.7M\$ shieldroom and Civil 0.4M\$ reactor/piping etc. 0.2M\$	reservoir etc.	0.3M\$ 0.1M\$	1.7 M \$
Gas	~20,000Nm³/h with 4~8kGy	accelerator (50kW) 0.7M\$ shieldroom and Civil 0.4M\$ reactor/piping etc. 0.2M\$	cooler ESP etc.	0.2M\$ 0.4M\$ 0.1M\$	2.0M\$
Sludge	10~20m ³ /h with 10kGy	accelerator (50kW) 0.7M\$ shieldroom and Civil 0.4M\$	conveyor feeder piping etc.	0.1M\$ 0.3M\$ 0.2M\$	1.7M\$

Lab. Scale Experiments (1~50m³/day)

Pilot scale Experiments (500~1,000m³/day)

31 Industrial scale Wastewater Plant (10,000m³/day)

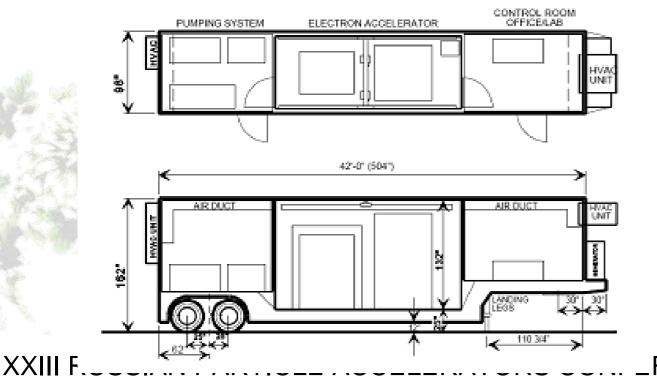
Lab. Scale Experiments XXIII1RUS999AMPPARTICLE ACCELERATORS CONFERENCE POPPACD 012 September 24 – 28, 2012, St. Petersburg, Russia

Mobile Plant is the Solution

Pilot scale Experiments (~500m³/day of water) (~2,000Nm³/h of gas) Size and weight : fit to the world standard (less than 40 ft in length and 30 tons in weight)

Beam Energy : enough high to get some penetration in water (higher than 0.6MeV)

Beam Power

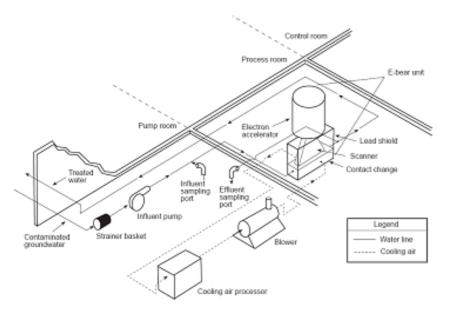

: enough high to work as a pilot scale (over 200m³/d of water, 1,000Nm³/h of gas)

Safety

: from the radiation, high voltage etc. stable structure for transportation

Previous Mobile Accelerator (HVEA, U.S.A. 1990)

Hen Voltage Environmental Applications, Inc.

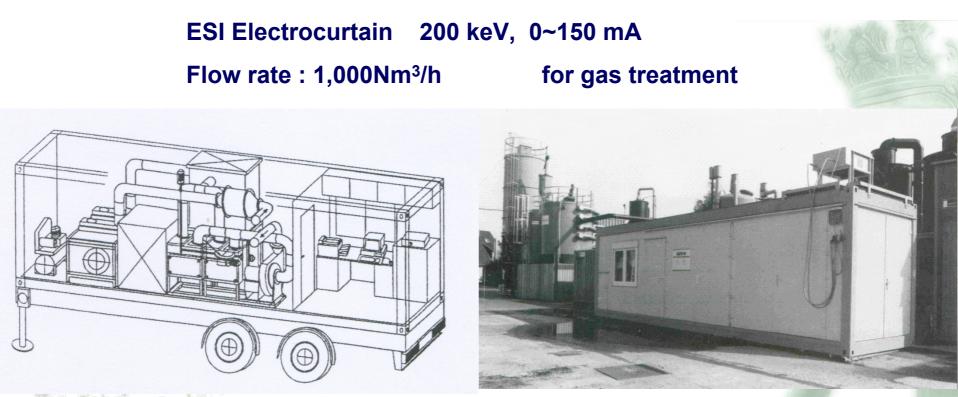


ICT accelerator 500 keV 0~40 mA Max. 20kGy

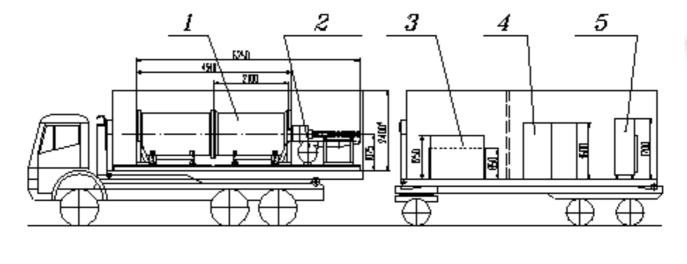
for watsewater

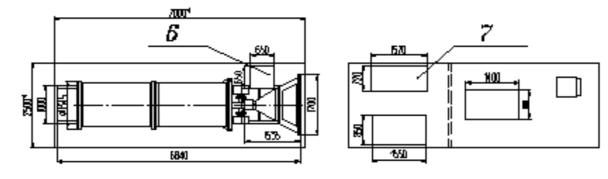
_RENCE RuPAC-2012

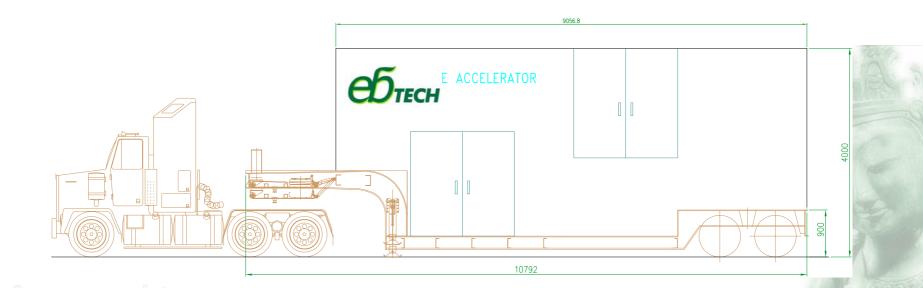
September 24 – 28, 2012, St. Petersburg, Russia



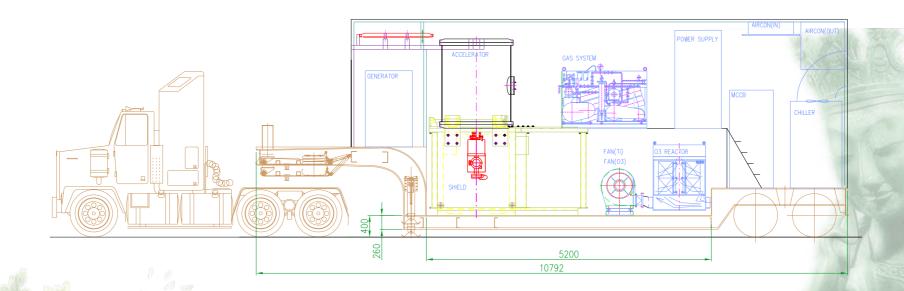
Ref.) Environmental Applications of Ionizing Radiation, Edited by william J. Cooper, Randy D. curry, and Kevin E. Oshea, "Field Application of a mobile 20-kW electron beam treatment system on contaminated groundwater and industrial wastes", p.451-466, ISBN 0-471-17086-0, 1998 John Wily & Sons, Inc.


Previous Mobile Accelerator (FZK, Germany 1984)


36


Ref.) FUCH, P.; ROTH B.; SCHWING, U.; ANGELE, H.; GOTTSTEIN, J. Removal of NOx and SO2 by the electron beam Process. Radiation Physics and Chemistry, 31, No. 1-3,(1988) 45-56

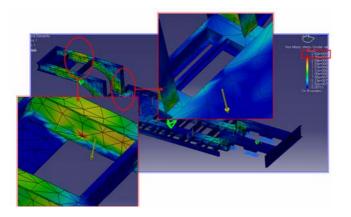
Previous Mobile Accelerator (BINP, Russia design)



Ref.) VESTNIK "RADTECH-EUROASIA", Edited by S.I.Suminov "Accelerators of ELV type : Status, Development, Applications" pp6~15 Novosibirsk, 1999

Beam Energy : 0.4~0.7MeV, Beam Power : 20kW Self-sustaining system : Self-shielded accelerator Built-in control and monitoring room Diesel electricity generator (option) Trailer and Shelter : Fit to U.S. and world standard Total weight : 40 tons (trailer only 30ton)

Built-in Computerized Experimental & Monitoring System Continuous Treatment of Wastewater/Flue gas on site Treatment Capacity : Liquid waste : 500m³/day (at max. 2kGy) Gaseous waste : 2,000Nm³/h (at max. 15kGy)

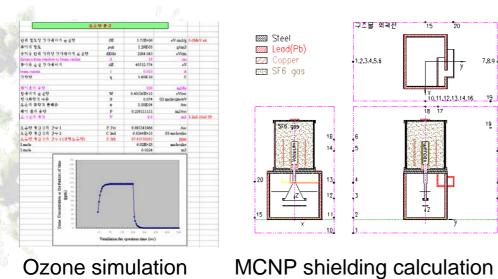

-.Structural Analysis and Other calculations

🔤 Steel

Em Lead(Pb)

ing SF6 gas

Copper



Duct의 저렇 계신		응압력손실 148,94		150+100-250mmAq		
Datelli		EN		EI Z		
117	일이 있는 것 같은 것 같	[m3/s/m3/hr)	yelue	850.0 m3/h		
ď	역트의 직경	[m]	0.101	0,000 80.01		
-		1000				
4	덕르의 걸이	[m]	6,00			
72	健보우갯수		5			
A	역트단면적	[m2]	0,00801	1		
v	익트분지	[m/s]	29,47	v=Q/A, 15~20m/s		
6	딕트네면의 조도[m]	[m]	0.00015	보통상태의조도 0.0001되m]		
v	유채의 비점성계수	[m2/e]	1.520E=05			
×	유쾌의비중렬	[kg/m2]	1.20000			
	$\Delta P = \lambda \frac{1}{d} \frac{v}{2g} \gamma$	λ= 0.0055 1	$1 + (20000 \frac{r}{d} +$	$\left[\frac{10}{\text{Re}}\right]^{+}$ $\left[\frac{10}{\nu}\right]^{+}$ $\left[\frac{10}{\nu}\right]^{+}$		
변수	의미	단위	value	HID		
4	처럼계수	-	0.0235			
Alt	레이뉼즈수	-	1.958E+05			
	1 4 4 4 M 10 4	1	dance an			
9	요역가족도	[m/s2]	9,8000			
9 6.Pt		[m/s2] mmAq				
6.Pt	중역가옥토	mmAq	9,8000 74,10			
6.Pt	음력가족도 존상압력	mmAq R/d	9,8000 74,10 [e/d			
6.Pt	음력가족도 존상압력	mmAq R/d 0,75	9,8000 7410 Le/d 23			
6.Pt	중역가옥토	mmAq R/d 0,75	9,8000 74,10 [e/d] 23 17			
6.P%	음력가족도 존상압력	mmAq R/d 0,75	9,8000 7410 Le/d 23			
	음력가족도 존상압력	mmAq R/d 0,75 1 1,5	9,8000 74,10 16 /d 23 17 12			

119244	0.611#V. 55mA. 60m/s				22214408	10425-141	1922	
	치미	44	188.0	42		and the second second	100 C	
to of each	1000 P			-				
10	Stopping Poner	Heritesh a	1.425	bral, ab also alstant, saithin frana table al				
d8/de(-5)	Specific Loss of Electron Energy (TR	1101-028	6.4125	at a + tra				
	Uttraate Strength (T)	t g rara::	57146					
	Contrast thermal south still.	2 me in	0.15					
	Heat Capacity	1.0,0	0.14	-trare, en %p10+2*=				
10	Desit,	0.04	4.5					
	Tolersbir - ottimp Tenspersture	0	450					
141444		1000 - T						
\$	E1+10	lie/	1					
1	Current	R.1.						
	NUSSA	18	0.512	27 640mm1 60%72				
	11164	10	0.045	7181812805-03				
	1112 1112	02	6.02564					
	+933	-	0.005					
1	Current Deesill	4/192	1.4125					
1	TITARASESS	TH .	0.00005	10am	$q = j \frac{dB}{dx}$			
0	riest fb.)	0.02	414022.0	생활활산문의	dx ax			
공기에서파								
100.00	0224+	021	1.1600-01					
87.	Freedt He	24	0.704	데기운토Sole에 위의 공기록 2 (Hokasa, Heat Maaster함프)				
	Themail Long. CO. W.	0.00	0.02624	and a second as				
4	연각공기 강호질에	10	9.975	입성훈육으로 가장	n uL			
¥7.	190745	11.1	86		Re =	-		
	增量余量	en 18	52.8	출구속도의 이식적과 가장	· ·			
50	相位 第二十	2+	115467.67	1:10'54RE 4#E 8#	-		$8.33 \frac{v^{0.0}qL}{k(s Pt)^0}$	0.5
47.		6	\$76.E		$\Delta T = (T_y$	- T,) =	8.33 - 44	4.0.8
75	Post 0 2:01 7 0 2:00 2 01	10	195.5	art # 200 100- 2000			K (3 PT)	u .
	regimed all they rate	11.1	760.52	+1110.64-0.000/-teo0	100			1

Heat & Cooling calculation

Structure stress simulation

fluid calculation

7,8.9

19

구조물 의과전

1.2.3.4.5.6

16

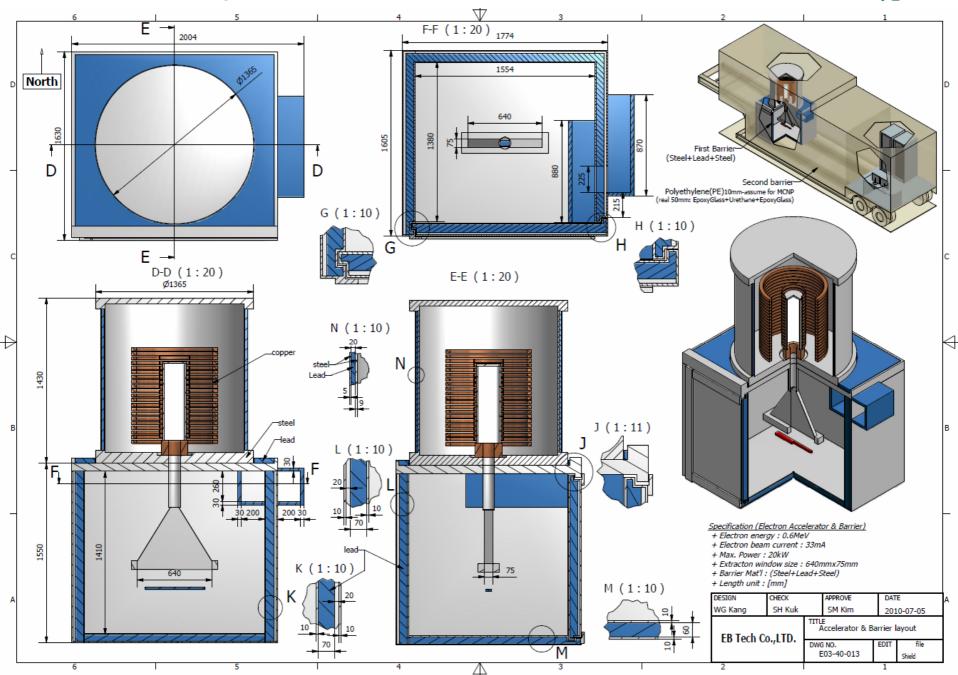
14

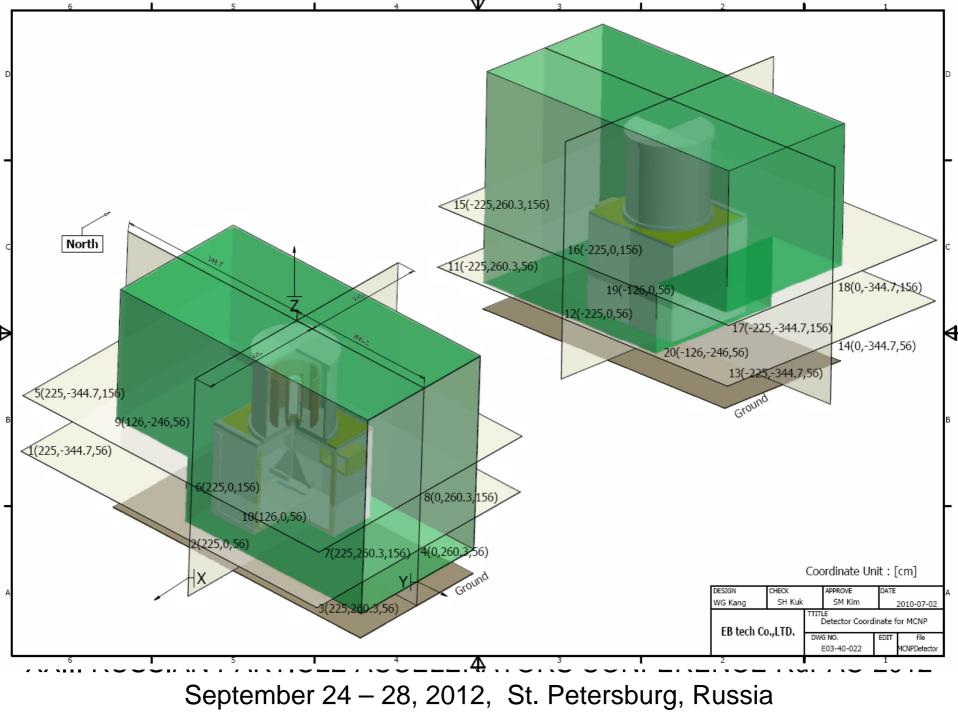
15

10.11.12.13.14.16

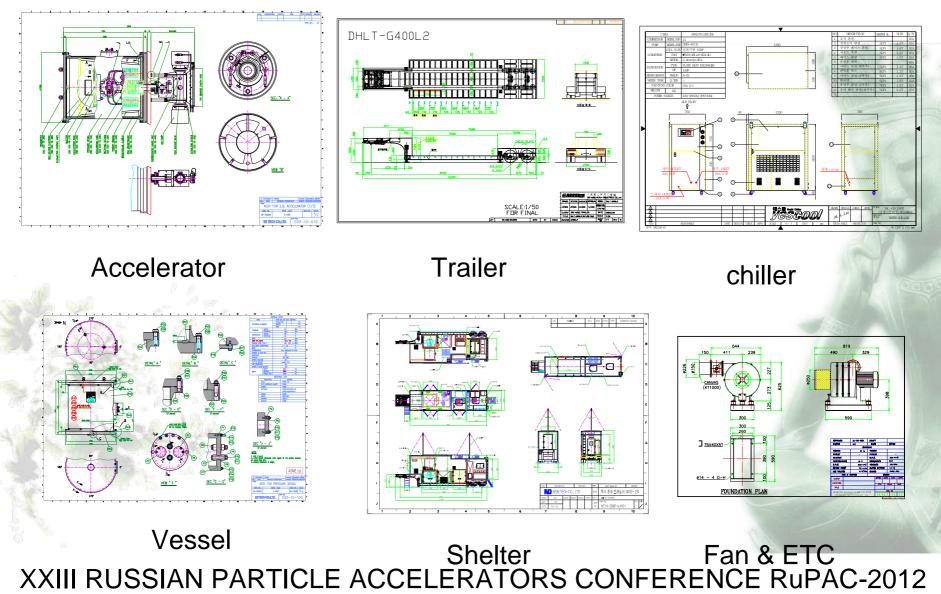
18 17

4 Τz

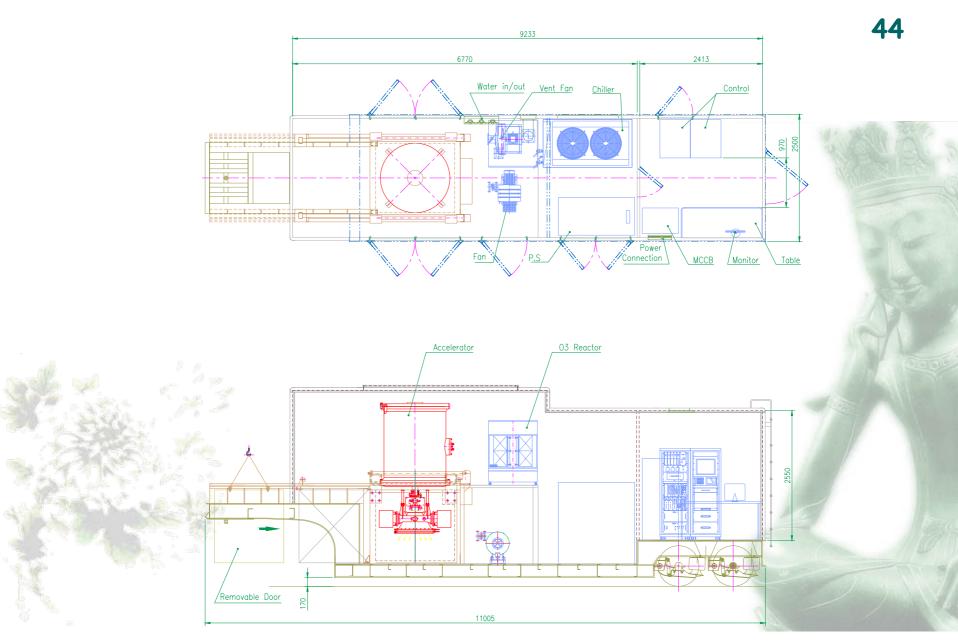

hem		Drawl	ng No.	Code
PRESSURE VES	INFEL	E03.5	10.100	ASME SEC.VIII. DIV.
	STR	ENGTH C	ALCULATI	ON
ud .	-		L SIDE	
esign Pressure	-	5	r6	
lesign Pressure liperating Pressure		0.7 (7)	rs Mpo(kafist)	
lesign Pressure Sperating Pressure lesign Temperature	-	0.7 (7) 0.55 (5.5)	Mpa(kafist) Mpa(kafist)	
Paid Design Pressure Operating Pressure Design Temperature Operating Temperatu		5 0.7 (7) 0.55 (5.5) 100 60	rs Mpaltafist Mpaltafist T	
esign Pressure (perating Pressure (esign Temperature (perating Temperature (W.H.T.)	RT	5 0.7 (7) 0.55 (5.5) 100 60	Npo(talist) Mpo(talist) Mpo(talist) T	
lesign Pressure lperating Pressure lesign Temperature lperating Temperatu W.H.T.		5 0.7 (7) 0.55 (5.5) 100 60 8	Npo(talist) Mpo(talist) Mpo(talist) T	
Design Pressure Operating Pressure Design Temperature Operating Temperatu	R.T U.T	5 0.7 (7) 0.55 (5.5) 100 60 80 FULL	Npo(talist) Mpo(talist) Mpo(talist) T	
eeign Pressure jorating Pressure lesign Temperature jorating Temperatu W.H.T. ladiography pint Efficiency (Shell	R.T U.T	5 0.7 (7) 0.55 (5.5) 100 60 80 FULL NO	Npa(kafis) Npa(kafis) Up (kafis) Up (kafis)	
esign Pressure gerating Pressure esign Temperature gerating Temperature W.H.T. iadiography sint Efficiency (Shell orrosion Allowance	R.T U.T	5 0.7 (7) 0.55 (5.5) 100 60 8 FULL NO 100 / 100 1.0	Npo(ufix) Npo(ufix) T T N N N N N	
esign Pressure perating Pressure esign Temperature perating Temperatu W.H.T. adiography	R.T U.T	5 0.7 (7) 0.55 (5.5) 100 60 8 FULL NO 100 / 100 1.0	rs Mpx(utha) Mpx(utha) C C C C C C C C C C C C C C C C C C C	
sign Pressure perating Pressure sign Temperature perating Temperature w H T. adography int Efficiency (Shell prosion Aloxance aterual	R.T U.T	5 0.7 (7) 0.55 (5.5) 100 60 8 FULL NO 100 / 100 10 10 A51	PE Mpx(talta) Mpx(talta) C C C C C C C C C C C C C C C C C C C	


Vessel ASME

1.000	$\left[\log \left(\frac{e / D}{3 \cdot 7} + \right) \right]$	Ro **)]	_				_
배 관25A	0.000654444	a3/hr			_		
	0.000654444	<u> 조도[mm]=</u> 상당됩이	0.045	Le.			-
254	Le/D=30 25A Elbow			8.52			_
	THA ELDON	0.0094667					-
	hallvalve # @[s3/s]	0.0034007	FIRIT-1	0.0284	a.m.	1983	45[s/s]2#
Pipe	0.000694444					6.331E-04	1.097
Elbow	0.000694444					6.3012-04	1.097
Ball walve	0.000694444					6.331E-04	1.097


4()

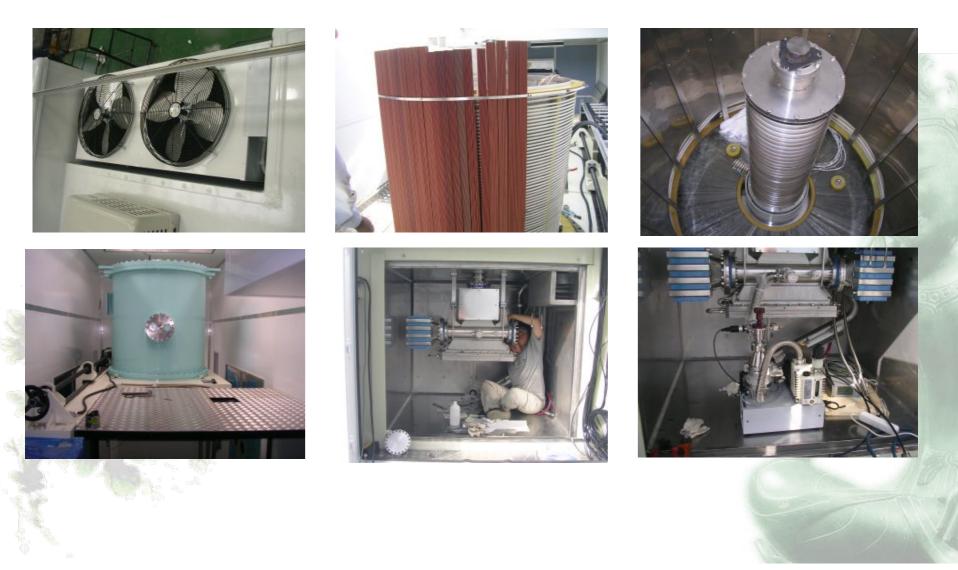
-.Radiation leakage calculation under ICRP with MCNP (Monte Carlo) Simulation 41



-. Detail Designs of each components of Mobile Accelerator

September 24 – 28, 2012, St. Petersburg, Russia

-. Manufacturing of each components of Mobile Accelerator



-.Assembly of Mobile Accelerator

A MOBILE ACCELERATOR SYSTEM CCEL OI **TRAILER #1 TRAILER #2** GAS SYSTEM POWER SUPPLY ACCELERATOR E 0.00 MeV GENERATOR (100KW TEMP 17 °C 0.05 mA D.P 1 nmAg 0 A/C FILTER 0 03-VENT FAN SUPPLY -25.0 °C PV 144 I/m STORAGE TANK(T1) 2 2 F/S 000 SV 150 I/mi TEMP 16 °C т.с 🔲 👼 Р.б RETURN -24.9 °C PH 6.95 LEVEL 64 % FM-1 NFLUENT 3-WAY VALVE CHILLER (15RT) TEMP: 16 °C INJECTION PUMP(P2) EFFLUENT REMOTE TRANSFER PUMP(P3) SUPPLY PUMP(P1) REMOTE RECYCLE 🛑)auto 🔘 on AUTO 🔘 ON) auto 🔘 on CA FAN EFELUENT ALARM MANU () OFF MANU 🔘 OFF MANU () OFF COMP CONNECT EB EB REACTER(R1) **FCYCLE **** ALARM RMS-1 0.0 uSv/h BATCH OPERATION FUEL 03/T 03/P S/DOOR O/FLOW RMS RMS-2 0.0 uSv/h 1 0.0 TURNS 0.0

Mobile e-beam in Flue gas Purification from oil-refinery in Saudi Arabia XXIII RUSSIAN PARTICLE ACCELERATORS CONFERENCE RuPAC-2012 September 24 – 28, 2012, St. Petersburg, Russia

Mobile e-beam in Flue gas Purification from oil-refinery in Saudi Arabia 52

5. Summary

- 1. Electron Beam Technology has been one of the promising process for environmental treatment, such as Flue gas/VOC, Water/ Wastewater, and Sludge from 1970s. Implementation of large scale plant has demonstrated the efficiency of system both in technically and economically.
- 2. Accelerators of high power (several hundreds kilowatt) are already available in the market, and some of them have proved their reliability in long term operation in Flue gas treatment and Wastewater treatment.
- 3. The application of electron beam to the treatment of pollutants has emerged as one of effective methods and some of the newly developed electron beam technologies could be able to contribute to treatment of pollutants from the human activities.

Thank You !

The second s