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Abstract 
Cherenkov radiation is widely used for particle 

detection. As well, it is prospective for particle bunch 
diagnostics. Therefore, it is actual to elaborate methods 
for calculation of the fields of bunches moving in the 
presence of different dielectric objects. We offer the 
approximate method based on calculation of the field in 
unbounded medium and accounting of boundary 
influence with help of geometrical optics. First, we 
consider the problem concerning the field of charge 
crossing a dielectric plate. This problem has an exact 
solution. It is used as a "test" problem for estimation of 
precision of the approximate method. Computation of the 
field is performed using both methods and the results 
have a good agreement. Further, we analyze the cases of 
more complex objects, in particular, a dielectric cone. 
Note that the offered method allows to obtain wave fields 
using neither complex analytical transformations nor 
laborious numerical calculations. 

INTRODUCTION 
Problems of radiation of charged particles in the 

presence of dielectric objects are of interests for some 
important applications in the accelerator and beam 
physics. It can be mentioned for example a new method 
of bunch diagnostics offered recently [1]. For realization 
of this method, it is necessary to calculate the field of 
radiation outside a dielectric object. As a rule the form of 
object in such problems does not allow obtaining an exact 
analytical solution. Computer simulation of 
electromagnetic field is also very cumbersome. Therefore 
development of approximate analytical methods for 
analyses of radiation in such problems is an actual task. 
One of such methods will be offered and developed in this 
paper. 

BASIS OF THE METHOD 
The method offered here concerns problems which are 

characterized by some large geometric parameters. Let a 
charged particle bunch move in some dielectric or 
magnetic object. It is possible as well that the charge 
moves in a vacuum channel in the object, and radius of 
the channel can be arbitrary. In addition, the case of 
charge moving along one of borders of object can be 
considered, and in such case the distance from this border 
to the charge trajectory can be arbitrary. Anyway we 

assume that the sizes of the object are much more than 
wave lengths under consideration. Therefore, the 
Cherenkov radiation (CR) excited by the bunch runs 
inside the object some distance which is much more than 
wave lengths. 

Under such conditions we can apply the following 
approach. At first, we calculate analytically the field of 
the charge in the infinite medium without "external" 
border. It is important that we can take into account such 
peculiarities of the problem as a vacuum channel (if the 
charge moves into the object) or finite distance from 
trajectory to the object's border (if the charge moves along 
the object). We underline that a lot of such problems have 
been solved in the literature. 

The second step is approximate calculation of radiation 
going out of the object (sometimes it is named 
"Cherenkov-transition radiation" (CTR) [2]). The idea of 
this calculation is related to Fok's method of analysis of 
reflection of waves from arbitrary surfaces [3] but we deal 
with transmission instead of reflection. The incident field 
is multiplied by the Fresnel transmission coefficient, and 
then we should take into account decrease of the radiation 
because of spreading of a ray tube in the external 
medium. Thus we obtain the first of refracted rays of 
CTR. Probably, this will be enough for the majority of 
applied problems. If it will be necessary, multiple 
reflections and refractions on the object borders can be 
taken into account. 

TESTING OF THE TECHNUQUE 
FOR DIELECTRIC LAYER 

For testing the method, we use the problem about the 
field of point charge flying through the dielectric layer 
with permittivity ε  placed at 0 z d< < . The charge 
density is set in the form ( , , )q x y z Vtρ δ= − . Such a 
problem has exact solution [4] which has been proved by 
us independently. We compare computations performed 
with use of exact formulae and approximate ones. Some 
results concerning the magnetic strength Fourier 
component Hφω  are given in Fig. 1. Note that 
approximate curves have a break on the boundary of "the 
light bar". Naturally, the exact solution is continuous 
everywhere (excepting the layer boundaries). 

One can see that some agreement takes place even for 

( )2 2 /d cλ π ω ε=  if the distance from the plate is 

2λ  as well. In the case when 210d λ  we have very 
good agreement for the most part of "the light bar". This 
result is very encouraging, and it stimulates applying the 
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method under consideration for more complex object 
where the exact solution cannot be obtained. 

 
Figure 1: The magnetic strength Fourier component 

( A s m )Hφω ⋅  depending on distance (cm)z for charged 
particle crossing the plate: computations using  exact ( red 
solid curve) and approximate (blue dashed curve) 
formulae;  1nCq = − , 1.5ε = , 0.6cmρ = , 0.99β =  

 

THE CASE OF CONE WITH CHANNEL 
We apply the method under consideration to the case of 

a dielectric cone with a cylindrical vacuum channel 
(Fig. 2). The external boundary of the cone is determined 
by the equation 0( ) tanz zρ α= −  where 0 / 2α π< < . 
The channel radius a  can be both less and more than the 
typical wave lengths. A point charge moves along the 
channel axis (z-axis). It is assumed that the wave of CR in 
the dielectric passes a distance much more than wave 
lengths. 

The first step of our consideration is solving the 
problem with infinite medium with vacuum channel (the 
solution of this problem is known [5]). At the second step, 
we firstly determine the point *M  of incidence of wave 
of CR on the cone boundary. The coordinates * *, zρ  of 
this point is a function of the coordinates of the 
observation point. Further, one can show that spreading of 
the ray tube outside the cone is the same as inside it. As 
result we obtain the expression for field outside the cone 
in the form 

 

( )* * exp / ,H H T i L cφω φω
ρ

ω
ρ

≈  

where *Hφω  is an incident field at *M  , T  is Fresnel 
transmission coefficient, L  is a ray path in vacuum. 

Figures 3 - 6 illustrate some properties of the solution 
obtained by the method under consideration. All graphics 

 
Figure 2: Cross-section of the cone.  

 

 
Figure 3: Angle of CR, angle of incidence and angle of 
refraction (in degrees) depending on the charge velocity 
for 4ε = . 

 
Figure 4: The magnetic field Fourier transformation 

( )A s m⋅  depending on distance (cm)rξ  from the cone 
surface along the transmitted ray; 1nCq = − , 

10 -12 3 10 sω π= ⋅ ⋅ , 4ε = , 2mma = , o45α = , 
0.99β =  
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 1nCq = −  and 
10 -12 3 10 sω π= ⋅ ⋅ . Figure 3 shows the angle of CR, the 

incidence angle and  the refraction one (see Fig. 2) 
depending on the charge velocity. Note that positive 
values of iθ  and tθ  correspond to the case shown in 
Fig. 2, these angles are negative at other positional 
relationship of the rays and the normal to the cone 
boundary. 

Figure 4 illustrates typical dependency of the magnetic 
field Fourier transformation on the distance rξ  from the 
cone surface along the direction of the transmitted wave 
propagation. Naturally, decrease of amplitude is 
explained by cylindrical divergence of radiation. 

Figure 5 shows the spectral density of the radiation 

energy 
2

~ φωσ H depending on the distance cξ  along 
the cone surface  (see Fig. 2). This value determines the 
total energy Σ  passing through a unit square: 

0

d Sdtσ ω
∞ ∞

−∞

Σ = =∫ ∫ , where S  is a Pointing vector. 

Dependencies of σ  on the charge velocity and the 
cone angle at some fixed point on the cone surface are 
shown in Fig. 6. It is interesting, for example, that 
dependence of σ  on the cone angle is not monotonous. 
Note that for some value of α  this magnitude tends to 
infinity that is connected with approach of iθ  to the limit 
angles of total reflection. 
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: The spectral density of the radiation energy 

( )2J s mσ ⋅  on the cone surface at =5cmcξ  

depending on α  for different β  (top) and on β  for 
different α  (bottom); 4ε = , 2mma = .   
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Figure 5: Dependency of the spectral density of the 

radiation energy ( )2J s mσ ⋅  on the distance 

(cm)cξ  along the cone surface for different angles 
α  (top), different permittivity values ε  (middle), 
and different channel radii a  (bottom).  
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