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Abstract

Modern ERL projects use superconductive accelerating
RF structures. Their RF quality is typically very high.
Therefore, the RF voltage induced by electron beam is
also high. In ERL the RF wvoltage induced by the
accelerating beam is almost cancelled by the RF voltage
induced by the decelerating beam. But, a small variation
of the RF voltage may cause the deviations of the
accelerating phases. These deviations then may cause
further voltage variation. Thus, the system may be
unstable. The stability conditions for ERL with one
accelerating structure are well known [1, 2]. The ERL
with split RF structure was discussed recently [3, 4]. The
stability conditions for such ERLs are discussed in this

paper.
INTRODUCTION

The scheme of an ERL with two accelerating structures
is shown in Fig. 1.
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Figure 1: Scheme of ERL with two linacs.

Electrons are injected to the linac 1. After two passes
through linac 1 and linac 2 they are used, for example, in
undulators. After that electrons are decelerated.

There are four electron beams in each linac
simultaneously. Each beam induced large voltage in the
linac, but the sum is not so large. If the phases of the
beams vary, the sum voltage also varies, and initially
small phase deviation may increase due to the dependence
of flight times through arcs on the particle energy. This
longitudinal instability is considered in our paper.

THE VOLTAGE EQUATIONS

To simplify the picture, consider each linac as one RF
cavity. Its equivalent circuit is shown in Fig. 2.
The gap voltage expression

U=Ld(l,+1,-CdU/dt—U/R)/dt, I, and I, arc

the currents of the beam and of the RF generator, leads to
the standard equation

d’U 1 dU 1 1 d
+

+ —U=——\[,+1 1
dt* RC dt LC Cd( ) M

Taking the effective voltage on the linac with number o
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in the form Re(U_e ™) (w is the frequency of the RF

generator), one obtains:
2dU, l§ -1
@ dt 0,

U

U +pa(]ba +Ig,a) (2)
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Figure 2: Equivalent circuit of the RF cavity.
where @, ZI/MZ(I—@ 120,)® is the
resonant frequency, O, =R, / JL,/C, >>1 is the
e

are the characteristic and the loaded shunt

loaded quality of the cavity, p, =R, /0,

and R,
impedances for the fundamental (TMg,,) mode, and
I, and / o are the complex amplitudes of the beam
and (reduced to the gap) generator currents
correspondingly. We are interested in the case of constant
I, . The beam currents /,, depend on all U, due to
phase motion. Linearization of Eq. (2) near the stationary
solution

O AL ST 3)
gives:
2ddoU, =l§“_lé‘(]a+ @
@ dt 0,

a a
+ P, | == Re U, +——2—ImoU,,
JReU, JdlmU,
Strictly speaking, I, depends on the values of U at

previous moments of time, so Eq. (4) is valid only if the
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damping times O, / @ is much longer than the time of
flight through the ERL.

THE STABILITY CONDITIONS

Considering the exponential solutions exp(a)/it / 2) of
system of linear differential equations Eq. (4), one can
find the stability conditions. Indeed, the system Eq. (4)
corresponds to the system of the linear homogeneous
equations A0U = MOoU with the consistency condition

|M - 1E| =0. Re(4) < 0 for all roots of this equation (i.

e., eigenvalues of the matrix M) is the stability condition.
The stability condition for ERL with one linac was
derived in paper [2]. In this case

I ORel, & ORel,

M=| @ "OrReU 0 Tomu| o
B ¢, dmi, 1 2Jlml,
0 po”ReU 0 po”ImU

and the characteristic equation is
A = ATr(M)+M|=0 (©)
According to Eq. (5) the stability condition is

Tr(M) = p(a”Relh N é’Imij 2

-—<0. @)
JReU JdImU ) Q

One can say, that the beam ‘“active conductivity”

(ARel,/0ReU +AImI,/AImU)/2 has not to

. . . -1
exceed the linac active conductivity (pQ) .

For the ERL with two linacs

M=
ORel, 1 ORel, & JRel,, JRel,,
P AReU, 0, i AImU, Q, ' 6ReU, P A1mU,
Jdlml,, & Jdlml, 1 Jdlml,, Jdlmli,
P s, T P e A P os T, 15
JReU, (O 2lmU, Q, JReU, 2lmU,
JRel,, JRel,, JRel,, _L JRel,, &,
P GReU, P omu, P oreu, o, Pomu, o,
Jdlml,, Jlml,, Jlm1,, +£ Jlmli,, 1
P 5ReU, “omu, T orev, 0, Pomu, o,
. . . . (8)
and the characteristic equation is (see, e. g., [5])
4 3 2 _
A =SA+854-5,4+5,=0, Q)
k
where S=> 4" |=> M, =Tr(M),
e \K) G
k [ k I m
S, = A .S, = A ,
? k1) k1
I<k<i<4 I<k<l<m<4 m
1 2 3 4 )
and S, =4 = |M| are the sums of main
1 2 3 4

minors of the matrix M. The necessary conditions for
stability (Re(4) < 0 for all four roots of Eq. (9)) is
positivity of all the coefficients of the polynomial Eq. (9).
In particular, the only independent on detunings &, and &
condition S} < 0 gives
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The sufficient conditions are given by the Liénard-
Chipart criterion [5]. It requires the positivity of of all the
coefficients of the polynomial Eq. (9) and the third
Hurwitz minor
5,<0,8,>0,8,>0,A, =5,(5,5,-5,8,)-S5; >0 (1)

In the simplest case of the isochronous ERL arcs the
conductivity matrix is zero. Then it is easy to proof, that
all stability conditions are satisfied.

As the qualities of the superconducting cavities are
very large, it is interesting to consider the opposite
limiting case, neglecting small terms 1/Q; , in the matrix
Eq. (8). Then all stability conditions do not depend on the
beam current. They depend only on the ratio p,/p, and the
beam conductivity matrix, which is fully defined by the
ERL magnetic system.

THE CONDUCTIVITY MATRIX

To proceed further, we have to specify the elements of
the beam conductivity matrix in the stability conditions.
The complex amplitude of the beam current /, may be
written in the form

1[5Relbl+é’lmlblj+ z(aRerz

+0”Imlb2 < 2 . 2
JReU, JImU, JReU, JImU,

N-1
[ = _212 (ei¢’211+(171+il//2n+a71 + e"(/’4.\uzwa+i'//4 N-2n-a ) ~
ba — ~
n=0 (12)

N-1
~ _nq Prnsa-1 iPaN-2n-a
~1,,(U,) 2112 (e Voniaa T€ W4N—2n—a)

n=0

where [ is the average beam current, ¢, is the
equilibrium phase for the n-th pass through the resonator
with the number a (o = 1, 2), and N is the number of
orbits for acceleration. The small energy and phase
deviations &, and , obey the linear equations:

€y, +eReloU, e |.(13)

n

& =&,+ eIm[UOa(

dt
WnJrl = l//n to| — 8n+1 4 (14)
n+l

dE
a(2n)=1,a(2n+1)=2 for 0<n< N -1
and a(2n)=2,a(2n+1)=1 for N<n<2N-1.
(dt/dE), is the longitudinal dispersion of the n-th 180-

degree bend. The initial conditions for the system of Egs.
(13) and (14) are, certainly, =0 and y,=0, if we have no
special devices to control them for the sake of the beam
stabilization, or other purposes. The solution of Eq. (13)
and Eq. (14) may be written using the longitudinal sine-

where

like trajectory S, and its “derivative” S ,'1k (elements 56

and 66 of the transport matrix). These functions are the
solutions of the homogenous system

Slap =S+ eIm[UOa(n)e_"p” ]Sn,k ;

n+lk

1s)

Synchrotron radiation sources and FELSs



Proceedings of RUPAC2012, Saintl-[Petersburg, Russia

dt ,
Stk =Sk TO —— | Sy (16)
dE n+l
with the initial conditions Si; =0, S, = 1. Then
= eZS Re[SU, e |, (17)
n—1 )
g, = ez S Re[él]a(k)e”‘”" ] (18)
k=0

Substitution of Eq. (20) to Eq. (15) gives

51}70{ =
2n+a-2
—ZIeIZ{e”"z”*“ ZSMW R [ U, e ””‘]+ (19)
) 4N-2n-a-1
+ el%N?zn ‘ ZS4N 2n-a.k Re[&]a(k _"/’k]}

k=0
For an ERL it needs to satisfy (at least approximately) the
recuperation condition

N-1
(e—ifﬂz/; + o Pan-2nm1 ) =0
n=0

N-1
Re|:U02 (e—lfpzlm + e_”/%,\uznfz ):| — 0

n=0

Re[U o1
(20)

For the longitudinal stability it also needs to have
longitudinal focusing for most of passes through the linac
(see Eq. (12, 13)):

eIm[UOa(n)e""" J< 0 1)

ifall (dt / dE), > 0). Conditions Eq. (20) and Eq. (21)
may be satisfied simultaneously, if (0<n<2N -1)

arg(eUOa(n)eii% ) + arg(eUOa(4N—n—l )eii%N?”?l ) = _ﬂ.’ (22)
which leads to
¢4N—n—l =7 - ¢n + 2 arg(eUOQf(n)) (23)

Conditions Eq. (26) affords equality of beam energies
after n-th and (4N-n)-th passes through a linac.

To make the stability condition Eq. (10) more explicit,
consider a simple example. Assume that equilibrium
phases are equal during acceleration. In this simplest case

Dy - arg(eU()l): DL, - arg(erz): ®, for

0 <n < N —1.Eq. (20) defines the equilibrium phases
for deceleration. Then Eq. (19) gives

N-1N-1
ep, I sin(2, )2254]\/72;171,21( +
n=0 k=0 (24)
N 1N-1 1 1
+ep,Isin(2d, ) Sav-anapin < H -
) 2 i aN-2n-2,2k41 < 0, 0,
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SIMULATIONS

Numerical calculations were made for proposed scheme
of ERL with two accelerating structures (the simplest
scheme is shown in Fig. 1). Parameters of accelerating

structures: 0, =0, =10°, p, =40MQ,
P, =90MQ, @=27-13-10°Hz, [=10mA,

U, =0.9GV, U, =1.9GV. Considering the magnetic

structure with acceptable growth of the horizontal
emittance [6, 7], one can check the stability conditions
Eq. (11). Simulations show that there exist phase regime
of the accelerating cavities with stability induced voltage
and thus high threshold current. Stability condition for

shift @, =0,
accelerating beam current is shown on Fig. 3

(approximately from -12 to -8 degrees) in case of equal
accelerating phase gains on the magnetic structures.

phase between RF wvoltage and

\ T T f—————————6;06E A
5 13 -1 -9 -7 5 3 -1
+-00E-05

Figure 3: Dependence between the max real part of
eigenvalues matrix M (vert.) and RF phases (hor.),

calculated at the different detuning parameters
(&=-1;- 0.1 ;1;1000).
CONCLUSION

In this paper we derived the criterion of the longitudinal
stability for the ERL with two accelerating structures.
Numerical calculations specify stability phase region with
high threshold current for the accelerating cavities of
accelerator with two linacs.
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