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Abstract
The present report deals with degenerate solutions of the

Vlasov equation. By degenerate solution we mean a dis-
tribution which has a support of dimension smaller than
dimension of the phase space. Well known example is
the Kapchinsky-Vladimirsky (KV) distribution, when par-
ticles are distributed on the 3-dimensional surface in the
4-dimensional phase space.

We use covariant formulation of the Vlasov equation de-
veloped previously [1]. In traditional approach, the Vlasov
equation is considered as integro-differential equation with
partial derivatives on phase coordinates. For the covari-
ant formulation of the Vlasov equation, we use such tensor
object as the Lie derivative. According to the covariant ap-
proach, a degenerate solution is described by differential
form which degree is equal to the dimension of its support.

Main attention is paid to the KV distribution, which is
described by the differential form of the third degree. It
is demonstrated that the KV distribution satisfies to the
Vlasov equation in covariant formulation.

This work has theoretical as well as practical signifi-
cance. Presented results can be applied for description and
simulation of high-intensity beam.

PHASE SPACE AND PARTICLE
DISTRIBUTION DENSITY

Consider a domain D in 4-dimensional space-time and a
system of smooth spacelike 3-dimensional surfaces filling
the domain D. Introduce a continuous parameterization of
that surfaces and system of continuously differentiable one-
to-one mappings of those surfaces to some selected surface.
Let as call the selected surface a configuration space asso-
ciated with this foliation of the space-time.

If we specify some reference frame, then we can take the
layers of simultaneous events for this reference frame as
that surfaces, and the time t a parameter. In this case, the
configuration space is the configuration space associated
with the reference frame.

When time passes, particles move from one layer to an-
other, but we can examine dynamics of particle ensemble
in 3-dimensional configuration space. Let us consider tan-
gent bundle of the configuration space as the phase space.
Denote by q a position in the phase space.

If there exists some kind of symmetry, we can pass to a
phase space of dimension less than 6. Denote the dimen-
sion of the phase space by K.

We shall consider various types of distributions. In the
simplest case, consider continuous charged media occupy-
ing a domain G0 in the phase space instead of set of discrete
particles. Take a family of subdomains {G}, G ⊂ G0, with

smooth boundaries for which their characteristic functions
are defined:

χ
G
(q) =

{
1, q ∈ G,
0, q /∈ G.

Let us call differential form of K−th degree

n = n1...K(q)dq1 ∧ . . . ∧ dqK (1)

the particle distribution density in the phase space (or phase
density), if for each subdomain G

∫
G0

χ
G
(q)n(q) = N

G
. (2)

Here NG is the number of particles in G, which in this
model may be not integer.

Consider the space of functions f(q) for which∫
G0

f(q)ω(q) exists for any form of K−th degree ω(q)
from given class. Let us call such functions integrable and
denote by F their space. For some form ω(q), define a
linear functional on F by the rule

< ω, f >=
∫
G0

f(q)ω(q), f ∈ F . (3)

Then definition (2) can be written as

< n, χG >= NG . (4)

Let us consider now the discrete model of point-like par-
ticles. In the frames of this model each particle is repre-
sented by a point in the phase space. Let us introduce the
linear functional δ(q) on F :

< δ(q), f >= f(q), f ∈ F . (5)

The measure μD =< δ(q), χD > is usually called the
Dirac measure. Therefore, let us call the functional (5) the
density of the Dirac measure. Let us call a linear combina-
tion of functionals (5)

<
∑

i

αiδ(q(i)), f >=
∑

i

αif(q(i))

such that for each subdomain G the equality (4) holds the
phase density. It is easy to see that in this case αi = 1,
and q(i) are particle positions in the phase space, i = 1, N
where N is the total number of particles:

n(q) =
N∑

i=1

δ(q(i)). (6)
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In this case, the density (6) is described by a scalar func-
tion, which is a differential form of 0 degree.

Consider also the model that can be regarded as inter-
mediate case between the model on continuous media and
the model of point-like particles. Assume that particles are
continuously distributed on some oriented p−dimensional
surface S in the domain G0. We shall describe distribution
density in this case by a differential form of p−th degree
defined on the surface. This form depends on orientation
of the surface, which is given by a set of K − p vectors.

A form of p−th degree σ(q) defined on a p-dimensional
oriented surface S specifies a functional on F :

< σ(q), f >=
∫
S

f(q)σ(q).

In this case, call such form

n(q) = σ(q) (7)

that the condition (4) holds the phase density.

COVARIANT FORMULATION OF THE
VLASOV EQUATION

As particles moves, their density depends on time. In
particular, points and surfaces for the cases (6) and (7) also
moves.

According to Vlasov, assume that particle dynamics is
determined by an external electromagnetic field and by the
self electromagnetic field, which is created by the media
being used as the model of a particle ensemble. For contin-
uous models (1), (7), we assume that particle density has
sufficiently small components to neglect the collision inte-
gral.

The particle dynamics equations define vector field w
in the domain D0 of the phase space. If right hand sides
of the dynamics equations are continuously differentiable,
then there exist integral lines, unique for each point and
each instance of time. Time can be taken as a parameter
for integral lines. In the simple case, when the phase space
is associated with an inertial frame, the vector field w is
defined by particle dynamics equations

dx

dt
= v,

3∑
i=1

gik(
d

dt
γv)i =

e

m
(Ek +

3∑
i=1

Bkiv
i), (8)

k = 1, 2, 3. Here e and m are charge and mass of a particle,
γ is reduced energy (in nonrelativistic case γ = 1), gik are
components of the metric tensor.

The covariant form of the Vlasov equation is [1]

n(t + δt, Fw, δtq) = Fw, δtn(t, q). (9)

Here Fw, δλ denotes Lie dragging along vector field w by
parameter increment δt.

For example, consider continuous model of maximal di-
mension. Let the phase density is differential form of max-
imal degree. For simplicity, assume that n is continuously

differentiable on t as a parameter. Then the Vlasov equa-
tion can be written in the form

∂n

∂t
= −Lwn(t, q). (10)

Additionally assume that n = n1...K(t, q) is continuously
differentiable on phase coordinates, consider nonrelativis-
tic particles, and take Cartesian coordinates. Then the
equation (10) means that the single component of the phase
density satisfies to the equation

∂n

∂t
+

6∑
i=1

wi ∂n

∂qi
= 0.

CYLINDRICAL BEAM IN
LONGITUDINAL MAGNETIC FIELD

Consider nonrelativistic uniformly charged cylindrical
beam in uniform longitudinal magnetic field. Assume that
all particles have the same longitudinal velocity. Such
beam can be described by four-dimensional particle dis-
tribution in the phase space of the transverse motion. Inte-
grals of the particles transverse motion are

M = r2(ϕ̇ + ω0),

H = ṙ2 + ω2r2 + M2/r2.

Here r, ϕ, z are cylindrical coordinates, ω0 = eBz/(2m),
ω2 = ω2

0 − e
0/(mε0), e, m are charge and mass of the
particles, 
0 is spatial density of the particles inside the
beam cross-section, ε0 is electric constant, Bz is longitu-
dinal component of the magnetic flux density [2, 3]. In this
case, magnetic flux is equal to Φ =

∫
Brϕ dr ∧ dϕ [4].

Hence, Bz = Brϕ/r = const and ω = const.
Take ϕ, phase of a particle trajectory θ, M, and H as co-

ordinates in the phase space. At first, consider the Brillouin
flow. In this case 
 = mω2

0ε0/e and ω = 0. Therefore, par-
ticles can move only on the surface M = 0, H = 0. The
Vlasov equation in this case can be written in the form

∂nϕθ

∂t
=

dϕ

dt

∂nϕθ

∂ϕ
+

dθ

dt

∂nϕθ

∂θ
.

One can see that nϕθ = const satisfies to the Vlasov equa-
tion. It means that the particles are evenly distributed on
azimuthal angle ϕ and on phases of their trajectories θ. As
particle trajectories in this case are circles, such distribu-
tion means rigid rotation of the beam as a whole around its
axis.

Consider well known Kapchinsky-Vladimirsky distribu-
tion. Let particles are located on the 3-dimensional sur-
face H = ω2R2, and are evenly distributed on M in seg-
ment M ∈ [−ωR2/2, ωR2/2], on azimuthal angle ϕ, and
on phases of their trajectories θ [2, 3]: nMϕθ = const. It
is easy to see that it is a stationary solution of the Vlasov
equation, which in this case has the form

∂nϕθM

∂t
=

dM

dt

∂nϕθM

∂M
+

dϕ

dt

∂nϕθM

∂ϕ
+

dθ

dt

∂nϕθM

∂θ
.
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Show that spatial density of particles is uniform in the beam
cross-section. Trajectories of the particles can be found
from equation of their motion: r̈ = −ω2r2 +M2/r2. Inte-
grating it, we obtain

r = 2−1/2R
√

1 − 4μ2 cos(2θ), θ = ωt + θ0

where μ = M/(ωR2). Passing to the Cartesian coordinates
x = r cosϕ and y = r sin ϕ, we get

nxyM =
nϕθM

D
, D =

∂x

∂θ

∂y

∂ϕ
− ∂x

∂ϕ

∂y

∂θ
=

r2μ sin 2θ

4
.

Expressing θ through r one can get

sin 2θ =
±√

1 − μ2 − (1 − 2r2/R2)2√
1 − μ2

.

Then D = R2
√

q2 − q4 − μ2 where q = r/R. For par-
ticles which trajectory passes through point with given r,
maximal value of |M | is Mmax = ωrR

√
1 − r2/R2. Inte-

grating on M and passing to the variable μ we obtain

nxy = α

q2−q4∫
0

dμ√
q2 − q4 − μ2

= const

where α = const. Hence, specifying the phase density as
mentioned above, we obtain the KV distribution.

KV DISTRIBUTION FOR BEAM IN
TRANSVERSE ELECTRIC FIELD

Consider particle distribution in the phase space of the
transverse motion. Transverse Cartesian coordinates x, y
and corresponding components of velocity ẋ, ẏ can be
taken as coordinates in the phase space. The KV (micro-
canonical) distribution is the distribution for which parti-
cles lie on the surface of the 4−dimensional ellipsoid, and
density in the configuration space is uniform inside corre-
sponding ellipse.

Assume that this ellipsoid is specified by the matrix(
Bx 0
0 By

)
, Bx,y =

(
(Rx,y)−2 0

0 (Vx,y)−2

)
.

Let introduce coordinates ϕx, ϕy, θ, on the surface of the
ellipsoid:

x = Rx cosϕx cos θ, ẋ = Vx sin ϕx cos θ,

y = Ry cosϕy sin θ, ẏ = Vy sin ϕy sin θ.

Take the distribution density on the surface of the ellipsoid
in the form

n = nϕxϕyθ dϕx ∧ dϕy ∧ dθ.

Find such nϕxϕyθ that density in the configuration space
be uniform inside ellipse x2/R2

x + y2/R2
y = 1. Expressing

density component in coordinates x, y, ẏ, we can obtain

nϕxϕyθ = nxyẋRxRyVx| sin ϕy|| cos θ| sin2 θ.

Integrating on admissible values of ẋ we have

nxy =

ẋmax∫
−ẋmax

nxyẋ dẋ =

=

ẋmax∫
−ẋmax

nϕxϕyθ dẋ

RxVx| sin θ| | cos θ|
√

R2
y(1 − ( x

Rx
)2 − ( ẋ

Vx
)2 − y2

.

Hence, if
nϕxϕyθ = n0| sin θ| | cos θ|, (11)

the spatial distribution is uniform.
If beam is propagating in linear transverse electric field:

Ex = kx, Ey = −ky, then it can be shown that θ is the
motion integral. So, the density (11) satisfy to the Vlasov
equation, which in this case takes form

∂nϕxϕyθ

∂t
=

dϕx

dt

∂nϕxϕyθ

∂ϕx
+

dϕy

dt

∂nϕxϕyθ

∂ϕy
+

dθ

dt

∂nϕxϕyθ

∂θ
.

CONCLUSION
As it is demonstrated, the covariant approach works for

description of degenerate solutions of the Vlasov equation.
The advantage of this approach is that it can be used when
the coordinates are curvilinear. Such approach can be also
used for description of the matter distribution in relativity
theory.
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