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Abstract
The problem of the effective linac design is of inter-

est to many fields of science, industry and medicine. It
is well known that nonsynchronous harmonics of RF field
(RF undulator) are focusing the low-energy particles. An-
alytical beam dynamics investigation can be carried out by
means of the averaging method over the rapid oscillations
period (the so-called smooth approximation) in the oscil-
lating fields. Motion equation is presented in the form of
the Hamilton’s equations. Motion integrals are sought by
means of Poincare mapping.

INTRODUCTION
The problem of the effective low-energy linac design is

of interest to many fields of science, industry and medicine
(e.g. nuclear physics, surface hardening, ion implantation,
hadron therapy). There are a few problems that lead to
beam instabilities at linacs. Nonlinear effects are the most
important among it. Certain nonlinear problems of acceler-
ator physics are both important for successful operation of
accelerator and interesting as problems in their own right.
In this paper we consider nonlinear interaction between
beam particles and a field of accelerator structure. In order
to accelerate the low-energy ion beams one of the follow-
ing fruitful rf focusing types can be used: alternating phase
focusing (APF), radio frequency quadrupoles (RFQ), fo-
cusing by means of the nonsynchronous wave field as well
as the undulator rf focusing. Each of mentioned focusing
types has its advantages as well as disadvantages. For ex-
ample, we consider axially symmetric Wideröe type struc-
ture with the rf focusing by the nonsynchronous harmonics
[1], [2].

BEAM DYNAMICS
It is difficult to analyse a beam dynamics in a high fre-

quency polyharmonic field. Therefore, we will use one of
methods of an averaging over a rapid oscillations period,
following the formalism presented in [1] – [3]. One first
expresses RF field in an axisymmetric periodic resonant
structure as Fouriers representation by spatial harmonics
of a standing wave assuming that the structure period is a
slowly varying function of a longitudinal coordinate z

Ez =
∞∑

n=0

EnI0 (knr) cos
(∫

kn dz

)
cosωt,

Er =
∞∑

n=0

EnI1 (knr) sin
(∫

kn dz

)
cosωt,

(1)
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where En is the nth harmonic am-
plitude of RF field on the axis;
kn = (1 + 2n)π/D is the propagation wave number
for the nth RF field spatial harmonic; D is the resonant
structure geometric period (depends on z implicitly); ω is
the RF frequency; I0, I1 are modified Bessel functions of
the first kind.

We shall assume the beam velocity (the one-particle ap-
proximation) differs from one of the field harmonic phase-
velocities strongly except the synchronous harmonic of rf
field, the gap-to-gap spacing of rf structure along the beam
axis being defined as D = βsλ (s + 0.5), where s denotes
the synchronous harmonic number, βs is the normalized
velocity of the synchronous (equilibrium) particle.

It is convenient to introduce the nondimensional vari-
ables Q̂ = (ξ; �) and τ as

Q̂ = 2πR
/
λ, R =

(
z; r

)
, τ = ωt, (2)

then one can write the second Newton’s law

d2Q̂

d τ2
= ê

(
τ, Q̂

)
, (3)

where ê = qEλ/2πmc2, q and m are charge and mass of a
particle.

The particle path in the rapidly oscillating field (1) we
search as a certain sum of a some slowly varying term and
a rapidly oscillating one. We assume that the amplitude
of the rapid velocity oscillations is much smaller than the
slowly varying velocity component for the smooth approx-
imation to be employed.

On averaging Eq. 3 over rapid oscillation period one can
present the motion equation in the smooth approximation
with the restrictions mentioned above in the following form
of the Hamilton’s equations

d Q

d τ
=

∂ H

∂ P
;

d P

d τ
= −∂ H

∂ Q
, (4)

where P and Q are the canonically conjugate variables, the
canonical coordinates being selected in such a way that the
origin in a phase space is an equlibrium point, i.e. Q =
( Q̂ − Q̂s)/βs and the beam-wave system Hamiltonian is

H (P, Q) =
1
2
P2 + Uef(Q) . (5)

Here Uef(Q) is the Effective Potential Function which
describes the low-energy beam interaction with the poly-
harmonical field of the system. The EPF depends solely on
the averaged variable Q = (ζ; η).
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EPF can be written as Uef = U0 + U1 + U2 [1], intro-
ducing notations

U0 = −1
2
es [I0(η) sin(ϕs + ζ) − ζ cosϕs − sin ϕs];

U1 =
1
16

∞∑

n�=s

e2
n

ν2
n,s

w(0)
n,s(η) +

1
16

∞∑

n=0

e2
n

μ2
n,s

w(0)
n,s(η);

U2 =
1
16

∞∑

n�=s
kn+kp=2ks

enep

ν2
n,s

[
w(1)

n,s,p(η) cos (2ζ + 2ϕs)

+ 2ζ sin 2ϕs − cos 2ϕs

]

+
1
8

∞∑

n�=s
kn−kp=2ks

enep

ν2
n,s

[
w(2)

n,s,p(η) cos (2ζ + 2ϕs)

+ 2ζ sin 2ϕs − cos 2ϕs

]
,

(6)

where ei = êi/βs, νn,s = (kn − ks) /ks, μn,s =
(kn + ks) /ks, ιn,s = kn/ks. n, s, p ∈ N0, ϕs is the syn-
chronous particle phase, the functions of the dimensionless
transverse coordinate being defined as

w(0)
n,s(η) = I2

0 (ιn,sη) + I2
1 (ιn,sη) − 1;

w(1)
n,s,p(η) = I0(ιn,sη)I0(ιp,sη)−I1(ιn,sη)I1(ιp,sη);

w(2)
n,s,p(η) = I0(ιn,sη)I0(ιp,sη)+I1(ιn,sη)I1(ιp,sη).

(7)

POINCARÉ MAPPING
Most of accelerator design is based on the paraxial ap-

proximation and the resultant linearized equations. In order
to investigate nonlinear beam particle interaction with the
linac field we study the particle motion in the potential (6)
by means of numerical simulations. For example, linac pa-
rameters presented in [1] were used to this purpose.

It is well known that chaotic particle motion can appear
even in Hamiltonian systems with a few degrees of free-
dom, including potential (6), due to property of nonlinear
systems to separate originally close particles trajectories
in the restricted space exponentially fast. For sufficiently
large perturbation strength, which appears far from linac
axis or near it in the case of strong field (see (1)), the parti-
cle motion can be chaotic. It is unacceptable for accelerator
operation because the particles go to sufficiently large am-
plitude that they are lost. Of some interest is the problem
of finding the largest regular Kolmogorov-Arnold-Moser
curve, as that defines the dynamic aperture inside which
linac operation is at least potentially possible.

We plotted numerically a few Poincare section un-
der linac parameters mentioned above. There are three
Poincare sections, calculated for H = Hsep and z = 0, z =
Lgr, z = L in Fig. 1, Fig. 2 & Fig. 3 respectively, where
Lgr and L are the field amplitude increasing length and the
linac total length. Based on the presented pictures one can
define the dynamic aperture readily. As one can see there is
no additional isolating motion integral (the so called third
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Figure 1: Poincaré sections at linac input.

–4

–2

2

4

–41° –17° –9° –1° 7° 15° 23°–33° –25°

Figure 2: Poincaré sections at the end of bunching part.

motion integral) in the given case. Furthermore, three qual-
itatively different types of motion are observed. The qual-
itative features are that for all time particle representation
points either lie on regular closed smooth curves or lie on
islands, jumping from one to other, or follow chaotic tra-
jectories, jumping around erratically.
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Figure 3: Poincaré sections at linac output.
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SUMMARY
Analytical beam dynamics investigation is carried out by

means of the averaging method over the rapid oscillations
period. Motion equation is presented in the form of the
Hamilton’s equations. Additional (third) motion integral is
not found by means of Poincare mapping for linac parame-
ters presented in [1]. Three qualitatively different types of
motion are observed.
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