Heavy ion cyclotrons of FLNR JINR – status and plans

Boris GIKAL

Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia

The FLNR scientific program on heavy ion physics :

 \triangleright

- Synthesis of new nuclei and study of nuclear properties and heavy ion reaction mechanisms;
- Investigation of reactions with light radioactive nuclei, investigation of proton halos in neutron pure nuclides, investigation of resonance states in ⁵H, ⁷H, ⁷He, ⁹He and ¹⁰He
 - Radiation effects and modification of materials, radioanalytical and radioisotopic investigations using the FLNR accelerators;
 - Development of the FLNR cyclotron complex for producing intense beams of accelerated ions of stable and radioactive isotopes;
 - Development of the U400+U400M cyclotron complex for the production of radioactive ion beams (the DRIBs project).

FLEROVLAB ACCELERATORS views of set-ups

 ${f U} extsf{-400M}$ (6 - 100 MeV/n)

U-400 (2.5 - 20 MeV/n)

IC-100 (1 - 1.3 MeV/n)

MT-25 (e - 25 MeV)

U-200 (α - 9 MeV/n)

DRIBs in Gallery

Running time of the FLNR U400 and U400MI cyclotrons in 2003-2008

Running time in hours						2008		
	2003	2004	2005	2006	2007	(expected)		
U400	6500	6500	5500	5500	5600	4400 (2900 Sep.)		
U400M	3300	2500	3500	3500	1700	2700 (1400 Sep.)		
Total	9800	9000	9000	9000	7300	7100		

* - Rest of the time is used for accelerators development of and installation of new equipment

U400 Cyclotron (1978)

TECHNICAL PARAMETERS of the FLNR CYCLOTRONS

Technical parameters	IC-100 <i>1985</i>	U-200 <i>19</i> 68	U-400 1978	U-400M 1992
Pole diameter [m]	1.05	2.0	4.0	4.0
Magnetic field [T]	1.94	1.93 ÷2.0	1.95÷ 2.15	1.5 ÷1.95
Energy factor	40	145	550÷ 625	400 ÷550
Weight of magnet [tons]	50	200	2000	2300
N sectors / Sect. Angle	4/56°	4/42°	4/42°	4/42°
Sectors Spiral	0 °	0 °	0 °	43°
Number of trim coils	-	12	14	14
Number of dees	2	2	2	4
Dee voltage [kV]	50	70	100	170
RF frequency [MHz]	20.5	14÷ 22	5.5÷12	11.5÷ 24
RF harmonics	4	2; 3	2;6	2; 3; 4
Vacuum [Tor]	2·10 -7	1.10-6	3.10-7	2·10 -7
Ion Source	ECR	PIG	ECR	ECR
Extraction	El. deflector	$\mathbf{Z}_{2}/\mathbf{Z}_{1}$	$\mathbf{Z}_2/\mathbf{Z}_1$	Z_2/Z_1
A/Z	5.7	2.7 - 5.5	5 -12	2 -10
Ion Energy	1.2; 0.5	3÷15	0.5 ÷20	6 ÷100

Avial injection system of U-400 Cyclotron

7

U400 Cyclotron Buncher System

Efficiency of Buncher System (I inj / I acc) for 1 μA - 70% for 100 μA - 30%

Two-turn extraction from U400

The stripping foil before using

Probe head of U400 cyclotron with the stripping foil

U400 Beam parameters

Ion	E, MeV/n	I, ECR	I, extracted	I, extracted
⁷ Li ¹⁺	16.6	100μΑ	30μΑ	6*10 ¹³ pps
⁶ Li ¹⁺	12.6	100µA	30μΑ	6*10 ¹³ pps
$^{11}B^{2+}$	17.8	90µA	33µA	4*10 ¹³ pps
$^{12}C^{2+}$	16.6	100μA	35μΑ	4*10 ¹³ pps
13C2+	14.4	100μΑ	35μΑ	3*10 ¹³ pps
14N2+	9.4	100μΑ	35μΑ	3*10 ¹³ pps
14N3+	20.3	100μΑ	35μΑ	3*10 ¹³ pps
¹⁸ O ³⁺	19.3	100μΑ	35μΑ	2.5*10 ¹³ pps
²⁰ Ne ⁴⁺	20.9	100μΑ	35μΑ	2*10 ¹³ pps
²² Ne ⁴⁺	17.8	100μΑ	35μΑ	2*10 ¹³ pps
36S6+	15	60µA	25μΑ	9*10 ¹² pps
⁴⁰ Ar ⁸⁺	19.9	100µA	35μΑ	1*10 ¹³ pps
⁴⁸ Ca ⁵⁺	5.3	60µA	22µA	7*10 ¹² pps
⁴⁸ Ca ⁹⁺	19	30µA	10µA	3*10 ¹² pps
⁸⁶ Kr ⁹⁺	5.1	60µA	10µA	2*10 ¹² pps
¹³⁶ Xe ¹⁴⁺	4.4	5μΑ	0.2 μA	3*10 ¹⁰ pps

Efficiency of transporting a ⁴⁸Ca⁵⁺ beam from the ECR source to a physical target

Measuring point	Beam intensity		Ion	Transmission factor			ſ	
ECR source, after separation	1·10 ¹⁴ pps	84 µAe	⁴⁸ Ca ⁵⁺	32%				
Cyclotron centre	3.5·10 ¹³ pps	27 μAe	⁴⁸ Ca ⁵⁺		81%			
Extraction radius	2.8·10 ¹³ pps	22 µAe	⁴⁸ Ca ⁵⁺			40%		
Extracted beam (by charge exchange)	9.7·10 ¹² pps	28 µAe	⁴⁸ Ca ¹⁸⁺				82%	
Target	8-10 ¹² pps	23 µAe	⁴⁸ Ca ¹⁸⁺					8.5%

Ionization efficiency of ⁴⁸Ca (neutral) to ⁴⁸Ca⁵⁺ - about 10%

• Transformation of ⁴⁸Ca as working substance into the ⁴⁸Ca beam on target is about 1% in routine operation. ¹²

DUBNA Gas Filled Recoil Separator

Proton number

The element 112 experiment

$U - 400 \rightarrow U - 400R$

1. Beam intensity of masses A \approx 50 with energy \approx 6 MeV/n up to 4 $\rho\mu$ a.

2. Smooth ion energy variation on the target

3. Variation of cyclotron average magnetic field from 0,8 up to 1,8 T.

4. Energy spread on the target up to 10⁻³.

5. Beam emittance on the target -10π mm \cdot mrad

6. New equipment.

Working diagram U-400R cyclotron

18

U400 -> U400R

Axial Injection System

$U400 \rightarrow U400R$

RF System

As an example - RF system of DC-60 cyclotron

 Bimetallic resonators – copper plated stainless steel

 Copper balls used as contacts on shorting plate

U400 ->> U400R

- Cryogenic pumps 6 units - 5000 l/s

- Turbomolecular pumps 4 units - 500 l/s

Vacuum System Scheme

$U - 400 \rightarrow U - 400R$

Beam Extraction by Electrostatic Deflector and by Stripping

Modernization of the U400 cyclotron (2008 – 2009)

to improve the quality and intensity of beams of stable and radioactive nuclei ions,
to improve the overall experiment efficiency,
to decrease the power consumption from 1 to 0.25 MWt.

Cyclotron U400 has been operating since 1979

U-400M Cyclotron (1991)

FLEROVLAB U-300 Cyclotron 1960-1989

- 1957 FOUNDATION *of* the LABORATORY
- 1960 CLASSICAL CYCLOTRON U300 START-UP
- 1963 DISCOVERY of 102 ELEMENT
- 1964 DISCOVERY of 104 ELEMENT
- 1965 DISCOVERY of 103 ELEMENT
- 1968 ISOCHRONOUS CYCLOTRON U200 START-UP
- 1970 DISCOVERY of 105 ELEMENT DUBNIUM
- 1971 CYCLOTRON U300 + U200 TANDEM START-UP

<u>1989-1991</u>: Reconstruction U-300 \rightarrow U-400M

U400W Beam parameters

Ion	E, MeV/n	I, ECR	I, extracted	I, extracted
⁷ Li ²⁺	35	100μΑ	30µA	6*10 ¹³ pps
¹¹ B ³⁺	32	90µA	30µA	4*10 ¹³ pps
$^{12}C^{4+}$	47	100μΑ	35μΑ	4*10 ¹³ pps
14N ⁴⁺	35	100µA	35μΑ	3*10 ¹³ pps
14N ⁵⁺	54	50μΑ	15μΑ	1.5*10 ¹³ pps
¹⁸ O ⁵⁺	33	100µA	30μΑ	2.5*10 ¹³ pps
²² Ne ⁶⁺	32	50µA	15μΑ	1*10 ¹³ pps
²² Ne ⁷⁺	43	50µA	15µA	1*10 ¹³ pps
36 S 10+	33	10µA	1.7µA	6*10 ¹¹ pps
⁴⁰ Ar ¹²⁺	40	12μΑ	2μA	7*10 ¹¹ pps
⁴⁸ Ca ¹⁰⁺	20	10µA	1.7µA	5*10 ¹¹ pps

Modernization of the U400M cyclotron (2007-2008)

- to install new axial injection system with two ECR ion sources
 to accelerate "low" (6÷15 MeV/A) energy ions,
 to extract the beams
- to the second direction.

Cyclotron U400M has been operating since 1993 U400M (2007)

lon sources and axial injection

Mounting of new axial injection system of U400M cyclotron

DECRIS-SC2 on test bench

New experimental set-ups at U400MR

Installation for chemical identification and study of properties of superheavy elements

MASHA

Launching of MASHA as online separator at the beams of U400MR (2007 – 2008);

DRIBs - Dubna Radioactive Ion BeamS-

39

U400Wh Cyclotron with DRIBs Complex

DRIBs - Project

Transformation of the primary beam into a low energy radioactive ion beam

Copyright 2004 Valerii Bashevoy Copyright 2001 Original Idea Yu.Ts. Oganessian

FLNR (JINR) Feb. 2001

DRIBS Accelerated Complex

RIB facilities: ⁶He, ⁸He beam intensities

		DRIBS
6He 808 ms	RIB	~ 10 ⁸ pps 11 MeV/n
	Primary beam Target	7Li; 10 μA 32 MeV/n Be
⁸ He 119 ms	RIB	~ 10 ⁵ pps (expected) 6÷8 MeV/n
	Primary beam Target	11B; 10 μA 34 MeV/n Be

DRIBS Accelerated Complex

Generation on U400M and acceleration on U400 ⁶He t_{1/2}=800 msec

Process	Time, sec		Efficiency		
	Project	Test	Project	Test	
Σ_1 -difussion from carbon catcher (1 μ)	50 x 10 ⁻³	50 x 10 ⁻³	1	1	
Σ_2 -transport to ion source (1 m x Ø 0,1 m)	20 x 10 ⁻³	20 x 10 ⁻³	1	1	
Σ_3 -ionization 1+ and separation	1 x 10 ⁻³	(50÷130)x 10 ⁻³	0,5	0,1	
Σ_4 -transport ⁶ He 1+ (120 m length)	2 x 10 ⁻⁴	2 x 10 ⁻⁴	0,8	0,23	
Σ_5 -acceleration capture	0	0	0,5	0,4	
Σ_6 -acceleration	50 x 10 ⁻⁶	50 x 10 ⁻⁶	1	0,8	
Σ_{Σ}	70 x 10 ⁻³	(120÷200)x 10 ⁻³	15 x 10 ⁻²	0,736 x 10 ⁻²	

 $\frac{\sum \sum project}{\sum \sum test} = 20$

Track membranes and applied research

Flerov Laboratory of Nuclear Reactions

Track membrane production technology

I. IRRADIATION WITH ACCELERATED HEAVY IONS

II. SENSITIZATION AND CHEMICAL ETCHING

FLEROV LABORATORY OF NUCLEAR REACTIONS JOINT INSTITUTE FOR NUCLEAR RESEARCH

Track membrane production technology

TRACK-ETCH + ELECTROPLATING TECHNOLOGY

II. MICRO- AND NANOSTRUCTURED SURFACES

FLEROV LABORATORY OF NUCLEAR REACTIONS JOINT INSTITUTE FOR NUCLEAR RESEARCH

IMPLANTING CYCLOTRON IC-100 History pages 1985

1C-100 Cyclotron (2002-2003)

IC-100 CYCLOTRON Axial Injection System

Intensity of the accelerated and extracted ion beams (IC-100 cyclotron, February 2007).

Element	Ion	A/Z	F _{HF} MHz	Target beam current in the experiments	Maximum beam current
Neon	$^{22}Ne^{+4}$	5.5	20.160	0.7 µA	
Argon	$^{40}Ar^{+7}$	5.714	20.200	2.5 µA	
Iron	⁵⁶ Fe ⁺¹⁰	5.6	20.240	0.5 µA	
Krypton	⁸⁶ Kr ⁺¹⁵	5.733	20.200	3.5 µA	3.5 µA
Iodine	$127I^{+22}$	5.773	20.200	0.25 μA	
Xenon	132 Xe $^{+23}$	5.739	20.180	3.7 µA	3.7 µA
Xenon	132 Xe ⁺²⁴	5.5	20.180	0.6 µA	
Tungsten	182 W +32	5.6875	20.142	0.015 μΑ	0.015 µA
Tungsten	$184 W^{+31}$	5.9355	20.142	0.035 μA	0.035 μA
Tungsten	184 W +32	5.75	20.142	0.017 μΑ	0.017 μA

Flerov Laboratory of Nuclear Reactions

NEW ACCELERATOR PROJECTS

DC-72 CYCLOTRON

multi-purpose cyclotron for Cyclotron Centre of Slovak Repablic (CCSR) in Bratislava (Slovakia) (delivery stage)

- The main field of DC-72 cyclotron application:
- Nuclear medicine:
 - Production of short lived radioisotopes for PET and SPECT diagnostic - ¹²³I, ⁸¹Rb, ²⁰¹Tl in (p, xn) reactions
 - Production α-emitters (²¹¹At in (α, xn) reactions) for radiotherapy
 - Development of Borum Neutron Capture Therapy (BNCT).
 - Neutron therapy.
 - Eyes proton therapy by 72 Mev proton beam.
- Investigation at the heavy ion beams
 - Production of polymer track membranes
 - Surface modification of standard materials
 - Nuclear, atomic and solid state research

DC-72 CYCLOTRON Parameters of Accelerated Ion Beams

Accelerated	Energy,	Maximal intensity of the extracted beams	
lon	MeV/nucl	(еµА)	(pps)
H-	72 - 36	50	3 ·10 ¹⁴
² H ¹⁺	30 - 15	100	6·10 ¹⁴
D -	30 - 15	50	3·10 ¹⁴
³ He ¹⁺	14 - 7	50	1,5·10 ¹⁴
⁴ He ¹⁺	8,6 - 4,3	50	1,5 ·10 ¹⁴
⁷ Li ¹⁺	2,8 - <2	3	6·10 ¹²
¹² C ³⁺	8,6-4,3	20	2·10 ¹³
¹⁴ N ³⁺	6,2 - 3,1	20	1,7·10 ¹³
¹⁶ O ⁴⁺	8,6 - 4,3	20	1,5 ·10 ¹³
²⁰ Ne ⁵⁺	8,6 - 4,3	20	1,2·10 ¹³
⁴⁰ Ar ⁸⁺	5,6 - <2	10	3 ·10 ¹²
⁸⁴ Kr ¹²⁺	2,8 - <2	3	7·10 ¹¹
¹²⁹ Xe ¹⁸⁺	2,7 - <2	1	1,6 ·10 ¹¹

DC-72 CYCLOTRON Underside View of Magnet

Electromagnet

Test Bench.

Support .

Stand

DC-60 CYCLOTRON created by FLNR for Research Center of State University in Astana, Kazakhstan

MAIN OBJECTIFS

PRODUCTION OF TRACK MEMBRANS WITH SPECIAL PROPERTIES

CREATION OF MICRO- AND NANOSRUCTURES

SURFACE MODIFICATION OF STANDARD MATERIALS, CREATION OF NEW MATERIAL WITH REQUIRED PROPERTIES

DC-60 CYCLOTRON MAIN ACCELERATED ION BEAM PARAMETERS

Ions	Li ÷ Xe
Mass to charge ratio A/Z	6 ÷ 12
Accelerated ion energy	0.35 ÷ 1.7 MeV/nucleon
Energy spread	2 %
Discrete ion energy change	Due to A/Z ratio
Smooth energy variation with respect to nominal one	-25 % / +25% Due to magnetic field variation

DC-60 CYCLOTRON LOW ENERGY ION BEAM PARAMETERS

Ions	He ÷ Xe
Mass to charge ratio (A/Z)	2 ÷ 20
Ion energy from ECR source	10 ÷ 20 keV/charge
Energy spread	0.1 %
Discrete ion energy change	Due to change of A/Z
Smooth ion energy variation	Due to extracted potential variation in ECR source

DC-60 CYCLOTRON

DC-60 CYCLOTRON

CYCLOTRON CENTRE BUILDING

DC-350 CYCLOTRON

project designed for scientific centre in Almaty, Kazakhstan

MAIN FIELDS OF PHYSICAL RESEARCHES AT DC-350 ION BEAMS

Fundamental investigations

- Synthesis and study properties of superheavy elements
- Radiochemistry laboratory for identification and study of chemical properties of the synthesized elements

Applied researches

- Track membranes and their application
- Modification of materials surface
- Ion-implantation nanotechnology

DC-350 CYCLOTRON ACCELERATED ION BEAMS PARAMETRS

lons	Li ÷ U
Mass to charge ratio (A/Z)	<mark>3 ÷</mark> 6
lon energy	<mark>3 ÷ 12 M</mark> eV/nucl
Energy spread	± (1 ÷ 5)·10 ⁻³
Discrete ion energy change	due to ion charge change (A/Z)
Smooth ion energy variation from nominal	40% due to magnetic field variation
Beam emittance	20 π mm mrad
Maximum beam intensity	<mark>3×10¹³ pps</mark>
Maximum beam power	<mark>~ 2 кW</mark>

DC-350 CYCLOTRON

Maximal beam intensity of rare isotopes at present (U-400) DC-350 accelerator complex* 48Ca – from 1,0 to 1,5 ρμA 48Ca – from 2 to 5 ρμA **50Ti – from 0,8 to 1,6 ρμA 50Ti – from 2 to 3** ρμA **54Cr – from 1,0 to 1,25** ρμA 54Cr – from 2 to 3 ρμA 58Fe – from 0,8 to 1,0 ρμA 58Fe – from 2 to 3 ρμA 64Ni – from 0,6 to 0,8 ρμA 64Ni – from 2 to 3 ρμA

lon energy of accelerated beams - 4,5÷5,5 MeV/nucleon

DC-350 CYCLOTRON

FLEROV LABORATORY of NUCLEAR REACTIONS ACCELERATOR COMPLEXES OF THE LABORATORY

U400

Microtron MT-25

NEW ACCELERATOR COMPLEXES

