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Abstract

One possible way to demonstrate both the efficiency and
beam quality in a plasma wakefield accelerator is to pre-
pare matched drive and accelerated beams by removing a
central slice from a single high-quality electron bunch (par-
ent beam). For parameters of the parent beam given, the
question arises how to maximize the number and energy of
accelerated particles and minimize their energy spread and
emittance. This question is addressed by numerical simu-
lations. The optimum shape of the beams, required plasma
length, achievable energy gain and energy spread are found
as functions of the plasma density and parent beam charac-
teristics. The required control accuracy of adjustable beam
and plasma parameters is determined.

INTRODUCTION

Since mid-1980th, the electron beam-driven plasma
wakefield acceleration (PWFA) is actively studied as a pos-
sible way to future high-energy linear colliders [1, 2]. Al-
ready demonstrated are good agreement between theoret-
ical predictions and experimental observations, high ac-
celeration rate and high energy gain [3]. High efficiency
of beam-to-beam energy transfer and high quality of the
accelerated beam (witness) are not experimentally proven
yet; this should be the next major step toward a competitive
plasma-based accelerator.

One possible way to achieve both the efficiency and
beam quality is to prepare matched drive and accelerated
beams by removing a central slice from a single high-
quality electron bunch (parent beam, Fig. 1). Given the
parameters of the parent beam, the question arises how to
maximize the number and energy of accelerated particles
and minimize their energy spread and emittance. Other
questions are what characteristics of the witness can be
achieved with available parent beams and to what accu-
racy the adjustable parameters of the system must be held.
These questions are addressed in the paper.

It is important to emphasize the degree of generality of
the obtained results. As a reference point for optimization,
we take the design parameters of PWFA experiment on
the VEPP-5 injection complex [4, 5]. The numerical val-
ues obtained are therefore applicable to this experimental
project only. The dimensionless relations are more general
and valid for any experiment where the parent beam has a
Gaussian-like shape. The scalings and order-of-magnitude
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estimates for accuracies are fully general and applicable
wherever the driver and accelerated beam are cut from a
single beam.

OPTIMIZATION PROBLEM

There are two groups of input parameters in our problem.
Parameters from the first group are stringently determined
by the beamline, cannot be easily varied, and are not a sub-
ject of optimization. We take them close to the design beam
parameters of Novosibirsk PWFA experiment [4, 5]: initial
energyW0 = γ0mc2 = 510 MeV, number of particles in
the parent beamNp = 2 · 1010, normalized rms emittance
ε0 = 20 mm mrad, initial energy spreadδW0 is negligibly
low, minimum possible lengthσz,min = 0.1 mm, mini-
mum possible radiusσr,min = 20 µm, cut-out sharpness
δz = 0.1 mm.

Parameters from the second group can be adjusted rel-
atively easily. They are the compressed beam lengthσz,
projections of chopper edges onto the compressed beamz1

and z2, beam radiusσr, plasma densityn0, and plasma
lengthLp. The optimum values are to be found with the
constraintsσz ≥ σz,min, σr ≥ σr,min, andz1 > z2.

Assume the parent beam at the entrance to the plasma is
axisymmetric with the density distribution
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where the functiong(z, zi) describes a smooth cutout edge:
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The geometry of the cut beam is illustrated by Figure 1.
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Figure 1: Beam shape at the entrance to the plasma.
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Dynamics of thus defined beam in the uniform unmag-
netized plasma of the lengthLp and densityn0 is followed
numerically with LCODE code [6, 7]. The output of the
code is a 6-space distribution of beam macroparticles at the
exit from the plasma. From these data, we find four goal
parameters: the number of accelerated particlesNw, their
average energy gain∆W , rms normalized emittanceεw,
and energy spreadδW .

For realization of the optimization algorithm, it is nec-
essary to combine the goal parameters into a single-valued
criterion functionF . The choice of the criterion function
determines the convergence speed and, in principle, can
strongly affect the result of optimization procedure. For-
tunately, in the problem considered, there exists an accel-
eration regime for which all goal parameters are simulta-
neously good and there is no trade-off between, for exam-
ple, energy gain and number of particles. Thus, the result
weakly depends on the particular criterion function if the
latter is reasonably chosen. Among several criterion func-
tions tested, the function

F = ln(Nw/Np) + ln(∆W/W0)

+
1

1 +
(

εw

2ε0

)2 +
1

1 +
(

δW
0.1 ∆W

)2 (3)

provides the best convergence.
The above procedure defines the function

F (σr, σz, z1, z2, n0, Lp) that has to be maximized in
the 6-space of adjustable parameters. The function is
noisy; a small variation of any argument can result in a
large change of the value. This is because beam particles
make about102 betatron oscillations in a typical plasma
length, and a very small variation of run parameters
is sufficient to change the oscillation phase at the exit.
Because of the noise, the search of maxima is best done
with a simple step-by-step algorithm. The search starts
from some random point and moves alternately in each
coordinate until a local maximum is found with a given
precision. Typically, one search takes about 200 code runs
and 50 hours at Pentium-IV.

Because of the noise, the search started from different
points results in different local maxima. The local maxima
found are not uniformly distributed in the parameter space;
they concentrate in regions of highF thus showing not only
the location of optimum regimes in the parameter space but
also the width of this regimes. Local maxima with low
values ofF can be easily culled.

OPTIMUM REGIME

The main result of the above optimization is that the op-
timum parameters form a curve in the 6-space of adjustable
parameters. The curve has one free parameter; let it be the
plasma densityn0. Other adjustable parameters are thus
determined byn0:

σz ≈ 2.15 c/ωp, σr = σr,min, (4)

Figure 2: (a) Values of the criterion function on the op-
timum curve (dots) and on the line(σr, σz, z1, z2, Lp) =
const (line); (b) optimum beam shape; (c) optimum beam
length; and (d) optimum plasma length. Dots show the lo-
cal maxima obtained numerically.

z1 ≈ 0, z2 ≈ −π

2
c/ωp, Lp ≈ Aγ0c/ωp, (5)

where the factorA depends on the parent beam population.
In our caseA ≈ 5. Figure 2 illustrates these statements.
From Figure 2a we can see that thoughF 6= const on the
optimum curve, this inconstancy is small compared to de-
crease ofF as its arguments deviate from the curve.

It is instructive to look at evolution of main witness pa-
rameters in the plasma (Fig. 3). In this section, we use the
input parameter set marked by crosses in Figure 2 and ap-
ply no halo filtering criteria. We see that the beam evolution
occurs in three stages. After escape of the beam tail, the
rest of the witness stably propagates in the plasma until the
driver get considerably depleted. Then the driver widens,
the wakefield structure changes, and the witness get defo-
cused and lost. The end of the second stage corresponds to
the optimum plasma length. The increase of emittance dur-
ing the second stage is a numerical effect that disappears at
shorter time steps, so it is a price for fast computing.
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Figure 3: Evolution of witness emittanceεw, energy gain
∆W , populationNw, and energy spreadδW as it propa-
gates in the plasma.
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Figure 4: Dependence of the witness energy gain∆W
(crosses) and energy spreadδW (ovals) on the plasma den-
sity.

The resulting energy spectrum depends on the plasma
density (Fig. 4). The witness energy gain is limited to about
the initial driver energy. At high plasma densities, the en-
ergy gain is high, but the energy spread is large because of
the limited beam shape control. Namely, as the density in-
creases, the width of the cut-out interval gets smaller than
the cut-out sharpnessδz, and the witness energy spread
increases. In units ofeE0 ≡ mcωp, the average accel-
erating rate is constant in a wide interval of plasma den-
sities and equalsA−1. Together with the expression (5)
for Lp, this suggests that the acceleration distance here is
determined by the driver depletion. At low plasma densi-
ties, the acceleration length is limited by emittance-driven
driver erosion, much of the energy remains with the driver
(Fig. 4), and the witness energy gain is small. Thus, the
optimum plasma density is the minimum one at which
the acceleration length is determined by driver depletion
(n0 ≈ 2.2 · 1015 cm−3 in our case).

The utilization efficiency of the driver energy is shown
in Figure 5. Since the deceleration field is not uniform
within the beam, about 50% of the energy is left with the
driver. Extra 20-30% are left in the plasma, so the overall
driver-to-witness efficiency is at 30% level in wide interval
of plasma densities.

Note that the beam-plasma interaction in the optimum
regime has most of the features of the efficient acceleration
mode described in Ref.[8]. Namely, both drive and witness
beams propagate in the blowout regime [9] in the electron-
free cavern, the beams are shaped to flatten decelerating
or accelerating field inside of them, and the length of the
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Figure 5: Efficiency of driver-to-plasma (crosses) and
driver-to-witness (ovals) energy transfer.

Figure 6: Variation of the witness populationNw, energy
gain ∆W , emittanceεw, and energy spreadδW as (a) the
parent beam length, (b) plasma density, (c) cut-out location,
and (d) cut-out width deviate from the optimum values.

driver is about one wakefield half-wavelength. The only
missed feature is the beam current, relatively low value of
which limits the efficiency at 30% level.

Once the optimum set of adjustable parameters is found,
the question arises of how precisely this values must be
controlled. To answer this question, we follow the variation
of main witness parameters as one of adjustable parameters
of the system deviate from the optimum value (marked by
crosses in Fig. 2). The results are illustrated by Figures 6
and 3. The tolerances listed correspond to twofold in-
crease/decrease of any minimized/maximized witness pa-
rameter (marked by continuous lines in Fig. 6). We see
that most of adjustable parameters of the system need to
be controlled with 20-30% accuracy, and the most sensitive
parameter is the plasma density. Note also that over-length
plasma in much worse than an under-length one.
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