
INAU: A CUSTOM BUILD-AND-DEPLOY TOOL BASED ON Git
L. Pivetta∗, A.I. Bogani†, Elettra Sincrotrone Trieste, Basovizza (TS), Italy

Abstract
Elettra Sincrotrone Trieste is currently operating two light

sources, Elettra, a third generation synchrotron, and FERMI,
a free electron laser. Control systems are based on a number
of diverse systems, such as VME-based front-end comput-
ers, small embedded systems, high performance rack-mount
servers and control room workstations. Custom device
drivers and hard real-time applications have been developed
during the years, exploiting the technologies adopted such
as RTAI and Adeos/Xenomai, which make a massive update
demanding. Modern CI/CD tools are then not available for
legacy platforms, and a custom tool, integrating git and a
database back-end to build and deploy software components
based on release tags has been developed.

INTRODUCTION
At Elettra and FERMI some complex subsystems, such as

the global orbit feedback or the hard real-time interfacement
of sensors and actuators, have been implemented exploiting
the capabilities of GNU/Linux together with hard real-time
extensions. Moreover, most of the interfacement of legacy
equipment is made by VME based digital and analog I/O
boards running on PowerPC single board computers. A
number of device drivers and hard real-time applications
have been developed in the years, making a complete system
upgrade unfeasible. This turns into an effective limitation
against adopting and using modern Ci/CD tools and proce-
dures, which are not compatible with legacy systems.

LEGACY SYSTEMS, AND NOT
Different platforms are in use at Elettra and FERMI, de-

pending on generation and the specific integration require-
ment. Leaving out some oldest systems running Microware
OS-9, which are no more developed, and thus, not sup-
ported by INAU, several generations of GNU/Linux based
single board computers and rack-mount servers are in use in
front-end systems:

• Emerson MVME5100 and MVME6100, running De-
bian 3 (Linux kernel 2.4)

• Emerson MVME7100, running Ubuntu 7.10, (Linux
kernel 2.6)

• Supermicro Intel-based rack-mount servers, running
Ubuntu 10.04 (Linux kernel 2.6)

• Supermicro Intel-based rack-mount servers, running
Ubuntu 14.04 (Linux kernel 3.14)

• Artesyn MVME2500, running Flop (Linux kernel 4.7)
• Jetway NUC, running Flop (Linux kernel 4.7)

∗ lorenzo.pivetta@elettra.eu
† alessio.bogani@elettra.eu

• Beaglebone White and Black, running Flop (Linux
kernel 3.14)

• Beaglebone AI, running Voltumna (Linux kernel 5.4)

• Altera Sockit, running Voltumna (Linux kernel 5.4)

• Supermicro Intel-based rack-mount servers, running
Voltumna (Linux kernel 5.4)

• Dell Intel-based rack-mount servers, running Voltumna
(Linux kernel 5.4)

Moreover, each accelerator deserves a central control sys-
tem cluster, based on Proxmox, running a large number of
virtual machines, where all the standard network services,
as well as the Tango databases and the high-layer Tango
devices run. All these virtual machines run Ubuntu 18.04
LTS. Control room workstations currently run Ubuntu 18.04
LTS as well.

As a side note, Voltumna is also available as virtual ma-
chine image, providing an effective approach to a totally
reproducible deployment for virtual machine hosts, based
on revision-control.

DEVELOPMENT ENVIRONMENT
Depending on the target system, different approaches are

used to build the applications. For legacy VME based sys-
tems, as well as older intel-based servers, native target com-
pilation/build, based on reference development hosts, is in
place. Newer systems, based on FLOP [1] and, more recently,
on Voltumna Linux, exploit a dedicated cross compilation
environment.

Since 2019 Git is used for revision control of all soft-
ware components developed in-house. For control systems
software, a structure has been defined to easily navigate
repositories, and conventions are in place to guarantee a
strict consistency within Git repositories.

DEPLOYMENT REQUIREMENTS
Control system integrity and robustness requirements pre-

vent from spreading administrator access rights to all the
developers. Instead, system administrators take care of main-
taining and servicing the control systems hosts. However,
developers want/need flexibility, and not to depend on sysad-
min for installing or updating applications and/or specific
application configuration files. On the other side, there is
the requirement to keep trace of who installed, updated or
downgraded what, when and where. This requirement can
be easily solved using modern CI/CD tools on reasonably
recent hosts, but is unfeasible with old systems. To make
this available on legacy platforms a custom build-and-deploy
tool has been developed, named INAU which stands for AU-
tomatic INstallation, in Italian.

13th Int. Workshop Emerging Technol. Sci. Facil. Controls PCaPAC2022, Dolní Brežany, Czech Republic JACoW Publishing

ISBN: 9 7 8 - 3 - 9 5 4 5 0 - 2 3 7 - 0 ISSN: 2 6 7 3 - 5 5 1 2 d o i : 1 0 . 1 8 4 2 9 / J A C o W - P C a P A C 2 0 2 2 - T H P P 1

THPP1

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

28 Infrastructure and Networking, Management of IT Projects, Cyber Security



INAU
INAU is based on two main services: the first, named

“builder” takes care of building software components as soon
as it’s required, the second, named “installer” is in charge
of interacting with developers (users) and installing upon
request. INAU services share a MySQL database, to store all
the configurations as well as the build and installation history,
and a dedicated filesystem to keep all the build products.

INAU is mostly written in Python 3, with some small parts
based on shell scripts to interact with legacy build hosts that
do not provide Python or where the supported Python version
is too old. INAU exploits the Python standard library, in
particular multiprocessing but also some additional libraries,
notably Flask RESTful [2] with SQLAlchemy [3], Python-
ldap [4], Paramiko [5], and GitPython [6].

Currently 13 tables have been defined and are in use in
the SQL back-end:

• providers: Git urls
• repositories: enabled repositories
• distributions: supported distributions
• architectures: supported architectures
• platforms: supported platforms
• builders: reference hosts for building
• builds: per-repository build information
• artifacts: per-build hash information
• facilities: list of deployment facilities
• servers: list of deploy servers
• hosts: list of deploy hosts
• installations: installation history
• users: enabled users
The table providers is used to keep the list of source code

stores, e.g. Git servers; at Elettra that is the self hosted Gitlab
server, community edition. The repositories table stores
the list of Git repositories, enabled within INAU, where each
repository is assigned a unique ID. Table 1 shows the Linux
distributions configured in INAU, whilst the architectures
available are ppc, i686, x86_64 and cascadelake-64. Note
that not all the combinations distribution/architecture are
available, and the supported ones are stored in the table
platforms.

Table 1: Supported Linux Distributions

id name version
1 Debian 3.0
2 Ubuntu 7.10
3 Ubuntu 10.04
4 Ubuntu 14.04
5 Ubuntu 16.04
6 Ubuntu 18.04
7 Ubuntu 10.04-caen
8 UbuntuDesktop 18.04
9 UbuntuDesktop 10.04

10 UbuntuDesktop 16.04
11 CCD 0.10beta22

The list of reference hosts available for building the soft-
ware components is stored in table builders.

INAU design provides support for C++ applications,
Python and Bash scripts and application-specific configura-
tion files. Each “product”, hereafter referenced as artifact,
needs to be uniquely identified, and traceable, within the
control systems: for each artifact INAU computes the hash1

and stores it in the table artifacts.
INAU supports selective deployment, where the devel-

oper can specify where an artifact has to be installed. The
concept of “facility”, which at Elettra and FERMI mostly
corresponds to the Tango facilities2 in use, has been intro-
duced. When installing, the usual case is to specify the
target facility, which make the artifact available to all the
hosts in the facility. As a special case, a single host can be
specified.

NFS is used to provide shared storage between hosts in
Elettra and FERMI control systems respectively, and each fa-
cility deserves at least one NFS server. The table servers is
used to associate the platforms with the relevant NFS server
and provide the installation prefix, that enables sharing dif-
ferent types of artifacts using the same NFS server.

The table hosts is used to keep track of the control system
hosts. Each host is associated to the facility it belongs, the
server providing the NFS storage and the platform.

The table installations records the installation requests
made by the developers, keeping track of the target host, the
build id, the type and the request date.

Moreover, in order to use INAU, the developer must be
added to the list of authorized users.

For each Gitlab repository exploiting INAU, a web hook,
that executes when a new annotated tag is pushed to the
repository, has been configured. The builder service, act-
ing as HTTP server, waits for the Gitlab message. When
received, the builder service checks-out the specific tag ver-
sion for all the platforms enabled and remotely builds the
software component on the reference hosts by means of ssh.
For each platform, build output files are kept between builds;
when triggered INAU incrementally builds only what re-
quired. This speeds up building components also on slower
legacy platforms. Whenever successful, the build is stored
into the dedicated location.

The INAU installer service is, as well, based on an HTTP
server that exports a REST API. Using a simple HTTP client,
such as curl, the user can interact with the service. The in-
staller service also supports authentication, based on LDAP.
INAU block diagram is shown in Fig. 1.

USING INAU
The user can perform some useful actions, such as get the

list of Gitlab repositories enabled in INAU, the list of hosts
belonging to a facility or request some installation history.
Moreover, the user can ask the installation of a repository,

1 Currently sha256 in used
2 A Tango facility is identified by the Tango database and all the hosts

which belong to

13th Int. Workshop Emerging Technol. Sci. Facil. Controls PCaPAC2022, Dolní Brežany, Czech Republic JACoW Publishing

ISBN: 9 7 8 - 3 - 9 5 4 5 0 - 2 3 7 - 0 ISSN: 2 6 7 3 - 5 5 1 2 d o i : 1 0 . 1 8 4 2 9 / J A C o W - P C a P A C 2 0 2 2 - T H P P 1

Infrastructure and Networking, Management of IT Projects, Cyber Security

THPP1

29

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Figure 1: INAU block diagram.

Table 2: Interacting with INAU on the Command Line
$ curl https://inau.elettra.eu/v2/cs/repositories
id name provider distribution version arch type destination
-------------------------------------------------------------------------------------------
3 cs/ds/sfe ssh://git@gitlab... Ubuntu 7.10 ppc cplusplus /bin/
...
1145 cs/gui/miotest ssh://git@gitlab... UbuntuDesktop 18.04 x86_64 cplusplus /bin/
1148 cs/ds/hipace ssh://git@gitlab... Ubuntu 18.04 x86_64 cplusplus /bin/

$ curl https://inau.elettra.eu/v2/cs/facilities/elettra/installations
host repository tag date author
-------------------------------------------------------------------------------------
pcl-elettra-cre-01 cs/gui/acdc 1.0.3 Thu, 08 Sep 2022 14:43:39 -0000 lorenzo.pivetta
...
srv-ds-sre-02 cs/ds/4uhv 3.0.10 Wed, 07 Sep 2022 16:27:48 -0000 alessio.bogani

$ curl https://inau.elettra.eu/v2/cs/facilities/padres/installations
-u alessio.bogani -d"repository=cs/ds/4uhv" -d"tag=3.0.8"

specifying the facility, the annotated tag and the username
that will be used for authentication.

Some INAU commands and their respective output are
listed in Table 2.

CONCLUSION
INAU service is up-and-running since more than three

years now, providing developers the autonomy and the
flexibility they require, but also guaranteeing a safe ap-
proach for system integrity. INAU allows to maintain an
accurate and always up-to-date view of applications and
application-specific configurations deployed in legacy pro-
duction systems.

A custom CI/CD service also brings in, as a marginal
benefit, a total independence from commercial CI/CD tools
that, from time to time, use to change the service policy or
introduce proprietary code/plugins.

ACKNOWLEDGEMENTS
Thanks to the Control Systems group members and to

the Software for Experiments group members for the useful
discussions and suggestions.

REFERENCES
[1] L. Pivetta et al., “FLOP: customizing Yocto project for

MVME5xxx PoperPC and Beaglebone ARM”, in Proc.
ICALEPCS’15, Melbourne, Australia, Oct. 2015, pp. 958–961.
doi:10.18429/JACoW-ICALEPCS2015-WEPGF112

[2] Flask RESTful, https://flask-restful.readthedocs.
io/en/latest/

[3] SQLAlchemy, https://www.sqlalchemy.org/

[4] Python-ldap, https://www.python-ldap.org/en/
python-ldap-3.4.2/

[5] Paramiko, https://www.paramiko.org/

[6] GitPython, https://gitpython.readthedocs.io/en/
stable/

13th Int. Workshop Emerging Technol. Sci. Facil. Controls PCaPAC2022, Dolní Brežany, Czech Republic JACoW Publishing

ISBN: 9 7 8 - 3 - 9 5 4 5 0 - 2 3 7 - 0 ISSN: 2 6 7 3 - 5 5 1 2 d o i : 1 0 . 1 8 4 2 9 / J A C o W - P C a P A C 2 0 2 2 - T H P P 1

THPP1

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

30 Infrastructure and Networking, Management of IT Projects, Cyber Security


