
USING REACT FOR WEB-BASED GRAPHICAL USER APPLICATIONS
FOR ACCELERATOR CONTROLS

R. Bacher, J. Szczesny
Deutsches Elektronen-Synchrotron DESY, Germany

Abstract
Today, control applications need to run on a variety of

different operating systems, including Windows, Linux,
and Mac OS, but also Android and iOS. Programming lan-
guages like Java have tried to solve this problem in the past
by providing a common runtime environment. However,
this approach is insufficient or even unavailable for mobile
devices such as tablets and smartphones. Another problem
is the different form factors of mobile and desktop devices,
which makes it difficult to develop portable applications.
One way out of this dilemma is to use standard web tech-
nologies (HTML5, CSS3, and JavaScript) to implement
applications that run in the browser, which is available for
all platforms. Modern JavaScript web application frame-
works combined with JavaScript graphics libraries such as
D3 are suitable for building both very simple and very
complex web-based graphical user applications. This paper
reports on the status and issues that we encountered in our
current developments with React.

LEGACY: WEB2CTOOLKIT
At DESY, the development of web-based user applica-

tions for accelerator operation started 2005 during the con-
version of the high-energy booster synchrotron PETRAII
into the synchrotron light source PETRAIII. In the follow-
ing years, the so-called Web2cToolkit framework [1] was
further implemented and its functionalities were extended
step by step.

The Web2cToolkit is a collection of web services includ-
ing

(1) Web2c Synoptic Display Viewer: Interactive synoptic
live display to visualize and control accelerator or beam
line equipment,

(2) Web2c Archive Viewer: Web form to request data
from a control system archive storage and to display the
retrieved data as a chart or table,

(3) Web2c Messenger: Interface to E-Mail, SMS and
Twitter,

(4) Web2c Logbook: electronic logbook with auto-re-
porting capability,

(5) Web2c Manager: administrator’s interface to config-
ure and manage the toolkit,

(6) Web2c Editor: graphical editor to generate and con-
figure synoptic displays, and

(7) Web2c Gateway: application programmer interface
(HTTP-gateway) to all implemented control system inter-
faces.

Web2cToolkit is a framework for Web-based Rich Cli-
ent Control System Applications. It provides a user-
friendly look-and-feel and its usage does not require any

specific programming skills. By design, the Web2cToolkit
is platform independent. Its services are accessible through
the HTTP protocol from every valid network address if not
otherwise restricted. A secure single-sign-on user authen-
tication and authorization procedure with encrypted pass-
word transmission is provided. Registered and so-called
privileged users have more rights compared to ordinary us-
ers (read-only permission).

The Web 2.0 paradigms and technologies used include a
Web server, a Web browser, HTML (HyperText Markup
Language), CSS (Cascading Style Sheets) and AJAX
(Asynchronous JavaScript And XML). The interactive
graphical user interface pages are running in the client’s
Web browser. The interface is compatible with all major
browser implementations including mobile versions. The
Web2cToolkit services are provided by Java servlets run-
ning in the Web server’s Java container. The communica-
tion between client and server is asynchronous. All third-
party libraries used by the Web2cToolkit are open-source.

The Web2cToolkit provides interfaces to major acceler-
ator and beam line control systems including TINE [2],
DOOCS [3], EPICS [4] and TANGO [5] as well as STARS
[6]. The toolkit is capable of receiving and processing
JPEG-type video streams.

The Web2cToolkit is a proprietary framework that is not
built on widely used JavaScript toolkits such as Dojo [7].
Due to progressing standardization efforts and the impres-
sive development speed of modern web technologies, the
Web2cToolkit is outdated and hardly maintainable in terms
of performance and usability. Therefore, the development
has recently been discontinued and only bug fixes are being
made.

Figure 1: Hybrid app architecture [8].

13th Int. Workshop Emerging Technol. Sci. Facil. Controls PCaPAC2022, Dolní Brežany, Czech Republic JACoW Publishing

ISBN: 9 7 8 - 3 - 9 5 4 5 0 - 2 3 7 - 0 ISSN: 2 6 7 3 - 5 5 1 2 d o i : 1 0 . 1 8 4 2 9 / J A C o W - P C a P A C 2 0 2 2 - T H P 2 2

THP22

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

90 Web technologies for user interface

Figure 2: Accelerator operations schedule.

PROGRESSIVE WEB APPS

Nowadays, users are spoiled by the powerful and rich
features of graphical user applications that can be down-
loaded from Apple's or Google's application web stores.
These applications tend to be native applications imple-
mented for a single platform and without a common code
base as they most likely originated from various platform-
specific software development kits.

Hybrid applications (Fig. 1) offer a way out of this di-
lemma. Hybrid applications are multi-platform applica-
tions with a common code base. The code is based on plat-
form-independent web technologies and a platform-spe-
cific component (WebView) wrapped into a native con-
tainer (e.g. Cordova [9]). However, an application is still
deployed and installed via a platform-specific application
web store.

Progressive Web Apps (PWA) are platform-agnostic
web applications developed using a set of specific technol-
ogies (e.g., HTML, CSS, JavaScript, WebAssembly, Ser-
vice Worker) and standard patterns to take advantage of
web and native application features. A PWA runs in the
browser engine, either embedded in the browser window
or as a fast-loading, network-independent standalone ap-
plication added to the user's home screen. It looks and feels
like a native app, has a responsive design, can be used on
any device and includes offline storage and access to native
features. A PWA can be discovered through a simple web
search and is downloadable from a web server.

TECHNOLOGY EVALUATION
Modern web development platforms like Angular [10],

React [11] or Vue.js [12] are well suited for the implemen-
tation of Progressive Web Apps. Recently, DESY has
started to explore the possibilities of cross-platform graph-

ical user apps based on React for the control of accelerators
and beamlines. So far, 3 evaluation projects using the React
framework have been carried out.

Web Data Display App
The Web Data Display app follows the design principles

of the Web2c Synoptic Display Viewer application. It pro-
vides generic, customizable GUI widgets (e.g.
Web2dPage, Web2dChart, Web2dTable, Web2dLabel-
Value, …).

A specific graphical user application consists of a pre-
defined set of graphical components whose configuration
parameters are stored in a configuration file that is read and
processed by the Web Data Display app at startup.

The graphical widgets are derived from the UI compo-
nent set of the Ionic framework [13]. This open source
framework is both platform-agnostic by using the cross-
platform app runtime Capacitor [14] and SDK-agnostic by
providing an interface to Angular, React and Vue.js. The
Ionic framework provides ready-to-use build workflows
for native, hybrid as well as Progressive Web Apps

Dashboard Apps
Two dashboard apps (accelerator operations schedule

(Fig. 2), PETRAIII status display (Fig. 3)) based on React,
JavaScript, HTML and CSS have been implemented to vis-
ualize the status and the performance of the operation of
the DESY accelerators. These apps are created using the
standard React project creation workflow. In most cases,
style information is separated from the code and contained
in CSS-files. The responsive behaviour is provided by the
Material UI component library [15]. Routing within the
apps is performed by the React Router library [16] which
is not part of the React framework.

13th Int. Workshop Emerging Technol. Sci. Facil. Controls PCaPAC2022, Dolní Brežany, Czech Republic JACoW Publishing

ISBN: 9 7 8 - 3 - 9 5 4 5 0 - 2 3 7 - 0 ISSN: 2 6 7 3 - 5 5 1 2 d o i : 1 0 . 1 8 4 2 9 / J A C o W - P C a P A C 2 0 2 2 - T H P 2 2

Web technologies for user interface

THP22

91

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

Figure 3: PETRAIII status display.

The apps communicate with the accelerator control sys-
tem and receive their data asynchronously using the prom-
ise based axios [17] HTTP client from a RESTful web
server which acts as a gateway to the accelerator control
system. The data is encapsulated in a JSON structure that
seamlessly integrates with JavaScript structures. Table 1
shows an example JSON data structure.

Table 1: Example JSON Data Structure
context PETRA
server VAC.ION_PUMP
device SEK.ALL
property P.MEAN
stsCode
timestamp
systemStamp
fmtCode
numElements
format
status
data

0
1663774206566
1873269314
5
1
FLOAT
success
1.3870215E-8

WebACOP Chart Library
The JavaScript WebACOP chart library is a novel variant

of the so-called ACOP component family [18]. It provides
a graphical component for displaying indexed data such as
timeseries or histogram data. WebACOP wraps the D3.js

[19] library in a JavaScript library. The D3.js library is suit-
able for creating dynamic, interactive data visualizations in

web browsers and makes use of SVG, HTML5, and CSS
standards. WebACOP dynamically configures the D3.js-
based chart and injects data read asynchronously from the
control system gateway server into the HTML/Canvas ele-
ment of the drawing area. The WebACOP chart library is
used to visualize live data from the operation of the PET-
RAIII accelerator as shown in Fig. 3. Its development is
not yet completed.

FINDINGS AND CONCLUSIONS
The React framework is a powerful tool for rapid proto-

typing. Once implemented, components can be easily re-
used in other projects. While the implementation of simple
components has proven to be relatively easy, the develop-
ment of complex components can be quite time-consum-
ing, cumbersome and error-prone.

The rapid release cycle of React versions often poses
challenges for the developer, as backward compatibility is
limited and incompatibilities with other third-part libraries
can arise.

It turns out that the responsive design approach works
well for dashboard applications, for example, but may not
work for complex, well-designed control room applica-
tions with a variety of graphical widgets.

Our exploration of the possibilities of cross-platform
graphical user apps based on React for the control of accel-
erators and beamlines is far from complete. For example,
our experience in terms of debugging is still very limited
and we also haven't explored how to migrate a React app
into an Electron [20] desktop application.

13th Int. Workshop Emerging Technol. Sci. Facil. Controls PCaPAC2022, Dolní Brežany, Czech Republic JACoW Publishing

ISBN: 9 7 8 - 3 - 9 5 4 5 0 - 2 3 7 - 0 ISSN: 2 6 7 3 - 5 5 1 2 d o i : 1 0 . 1 8 4 2 9 / J A C o W - P C a P A C 2 0 2 2 - T H P 2 2

THP22

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

92 Web technologies for user interface

REFERENCES
[1] R. Bacher, “Light-Weight Web-based Control Applications

with the Web2cToolkit”, in Proc. ICALEPCS'09, Kobe, Ja-
pan, Oct. 2009, paper THP110, pp. 889-891.

[2] TINE, https://tine.desy.de
[3] DOOCS, https://doocs.desy.de
[4] EPICS, http://www.aps.anl.gov/epics
[5] TANGO, http://www.tango-controls.org
[6] STARS, http://stars.kek.jp
[7] Dojo Toolkit, https://dojotoolkit.org/
[8] Hybrid vs. Native, eBook, https://ionicframe-

work.com/
[9] Apache Cordova, https://cordova.apache.org/

[10] Angular, https://www.angular.io/

[11] React, https://reactjs.org/
[12] Vue.js, https://vuejs.org/
[13] Ionic framework, https://ionicframework.com/
[14] Capacitor,

https://capacitor.ionicframework.com/

[15] Material UI, https://mui.com/
[16] React Router,

https://github.com/remix-run/react-router

[17] axios, https://github.com/axios/axios
[18] P. Duval, M. Lomperski, J. Szczesny, H. Wu, T. Kosuge, J.

Bobnar, “ACOP. NET : Not Just Another GUI Builder”,
in Proc. PCaPAC'18, Hsinchu, Taiwan, Oct. 2018, pp. 139-
143. doi:10.18429/JACoW-PCaPAC2018-THCB1

[19] D3.js, https://d3js.org/
[20] Electron, https://www.electronjs.org/

13th Int. Workshop Emerging Technol. Sci. Facil. Controls PCaPAC2022, Dolní Brežany, Czech Republic JACoW Publishing

ISBN: 9 7 8 - 3 - 9 5 4 5 0 - 2 3 7 - 0 ISSN: 2 6 7 3 - 5 5 1 2 d o i : 1 0 . 1 8 4 2 9 / J A C o W - P C a P A C 2 0 2 2 - T H P 2 2

Web technologies for user interface

THP22

93

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

