
PYTHON BASED INTERFACE TO THE KARA LLRF SYSTEM
E. Blomley∗, J. Gethmann, P. Schreiber, M. Schuh, W. Mexner, A. Mochihashi, A.-S. Müller

Karlsruhe Institute of Technology, Karlsruhe, Germany
S. Marsching, aquenos GmbH, Baden-Baden, Germany
D. Teytelmann, Dimtel Inc., San Jose, California, USA

Abstract
The Karlsruhe Research Accelerator (KARA) at the Karls-

ruhe Institute of Technology (KIT) is an electron storage ring
and synchrotron radiation facility. The operation at KARA
can be very flexible in terms of beam energy, optics, intensity,
filling structure, and operation duration. Multiple digital low-
level radio-frequency (LLRF) systems are in place to control
the complex dynamics of the RF cavities required to keep the
electron beam stable. Each LLRF system represents a well
established closed system with its own set of control logic,
state machine and feedback loops. This requires additional
control logic to operate all stations together. In addition,
during special operation modes at KARA, extra features
such as well defined beam excitation are needed. This paper
presents the implementation of a Python layer created to
accommodate the complex set of options as well as an easy to
use interface for the operator and the general control system.

RF SETUP OF KARA
KARA makes use of two RF stations controlled by one

LLRF system each. Each RF station consist of a klystron
which feeds two cavities utilizing a magic T with a fixed 3dB
splitting ratio. In addition, the smaller booster synchrotron
is powered by one cavity with an additional LLRF system.
The electron beam in KARA is accumulated at 0.5 GeV
with a 1 Hz injection cycle in the booster synchrotron. The
accumulation period can typically last up to one hour. After
the injection is finished, the beam energy of the storage ring
is slowly increased to its final operating energy. Depending
on the final energy, the energy ramp lasts up to three minutes.
Therefore, in our common operation scheme, the demands
of the RF system differ substantially between the booster
synchrotron and the storage ring. The first operates on a
fast, pre-defined and synchronized voltage ramp, whereas
the approach for the storage ring is to explicitly set the RF
voltage level to accommodate for the increase in beam energy
as the energy slowly increases. Table 1 shows a summary of
the RF system characteristics.

Digital LLRF System
Modern, digital LLRF systems take care of operating the

RF cavities by controlling the amplitude and phase of the
RF waves, while also providing access to data points to read
out signals, configure the relevant parameters and operate
the RF station in general. At KARA the LLRF9 [1] from
Dimtel was installed in 2016 with the booster synchrotron
following in 2017. Each LLRF system has up to 9 RF inputs
∗ edmund.blomley@kit.edu

Table 1: RF System Characteristics

Parameter Booster Storage Ring
𝑓RF (MHz) 500 500

Voltage Range (kV) 5 - 25 300 - 1500
Energy Range (GeV) 0.05 - 0.5 0.5 - 2.5

Ramp Duration (s) 0.8 170
LLRF Stations 1 2

Cavities 1 4

as well as the option for additional slow inputs to, for exam-
ple, monitor the cavity vacuum levels. The main internal
signal processing takes place on a field-programmable gate
array (FPGA) surrounded by a Linux operating system pro-
viding slow access via the EPICS control system [2], which
is also the main control system of all accelerators at IBPT.
The EPICS interface allows access to around 600 process
variables. This includes access to a stored ramping curve,
captured waveforms of the fast inputs and an integrated net-
work analyser, among other features. The system comes
with a full set of graphical user-interface (GUI) panels (see
Fig. 1).

Figure 1: Native LLRF GUI. Visible is the top level control,
the network analyser and the waveform acquisition tools.

USE CASES
The embedded EPICS controls and panels do an excellent

job for what they were designed for, namely commissioning,
configuring and monitoring the LLRF system. Still, there
are several reasons as to why an additional software layer
surrounding the core LLRF system might be useful.

Daily Operations
How the LLRF system is used in daily operations might be

quite different from accelerator to accelerator or in this case
even between the storage ring and the booster synchrotron.

13th Int. Workshop Emerging Technol. Sci. Facil. Controls PCaPAC2022, Dolní Brežany, Czech Republic JACoW Publishing

ISBN: 9 7 8 - 3 - 9 5 4 5 0 - 2 3 7 - 0 ISSN: 2 6 7 3 - 5 5 1 2 d o i : 1 0 . 1 8 4 2 9 / J A C o W - P C a P A C 2 0 2 2 - T H P 2 0

THP20

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

86 User Interfaces and Tools



While the operation modes differ, the most common ones
can typically be described by a fixed routine. A surrounding
framework can directly implement these routines and there-
fore provide the operator with a simplified method to interact
with and monitor the LLRF system, without requiring the
extensive knowledge and training to work with the native in-
terface. For example, in case of the booster synchrotron, the
operator is mostly interested in making sure that the system
is ON and operational without needing to manually:

• Reset interlocks if present
• Load a pre-defined ramping curve to waveform genera-

tor
• Switch on the LLRF feedback loop
• Switch to external hardware trigger and ramping mode

Control of Multiple LLRF Stations
Each LLRF system represents its own ecosystem, taking

care of monitoring and controlling various feedback loops
and external hardware such as motor controllers used to tune
the cavities. But if multiple LLRF systems are in place,
some form of high level control is desired. Certain actions
just have to be mirrored to all stations, such as resetting
interlocks and getting the units into an operational state. For
other areas additional data points can be introduced, such as
a voltage sum across all stations, which can be monitored
and set without manual interaction with the individual LLRF
systems. Another typical example is adjusting the relative
phasing between the booster and the storage ring as a whole,
as well as, between the two stations of the storage ring.

Extending Features
An additional software layer also creates an entry point to

extend the capabilities of the LLRF system. An important
feature for KARA is the internal waveform generator of each
LLRF unit, which allows loading arbitrary waveforms of
a maximum length of 512 elements. A useful extension
of this is the ability to load a user-defined curve. Since
it would be cumbersome to manually define 512 elements
interpolation is useful, as well as dynamic scaling before the
curve is loaded to the LLRF hardware. In addition, simple
periodic patterns can be generated, such as sinusoidal or step
functions which are useful for various beam studies [3–5].

Working with Physical Values
Devices in an accelerator are often controlled with prop-

erties using hardware units, such as Ampère 𝐴 for magnet
currents or amplitudes in 𝑑𝐵 for cavity fields. From an ac-
celerator physics point of view, properties in physical units
to monitor or even control elements of the storage ring are
often desired. Taking the hardware units from the LLRF
system and combining this information with additional data
provided by the control system such a conversion can take
place. Depending on the physical quantity, there might be a
need to calibrate or estimate the actual value based on some
additional model input. Typical examples are the ability to

control the overall voltage level by setting a desired syn-
chrotron frequency 𝑓s (calibrated) or provide an estimation
of the momentum compaction factor 𝛼c (model input).

DESIGN CONSIDERATIONS
A custom software layer, internally referred to as LLRF

control service, was developed with the original installation
of the digital LLRF systems to provide most of the features
discussed in the previous section. The service was written
as a stand-alone C++ application. Since there were no com-
parable applications written in C++ at that point of time,
additional code was required for the basic integration and
interaction with our control- and operation systems. By now
this system exists as an independent artifact without any
other applications making use of the same C++ interface,
making it difficult to maintain, improve or extend the code
base. In addition, two separate versions of the control ser-
vice exist, one for booster and the other one for storage ring
operation, each having a different set of features. The differ-
ent feature sets made sense at the time, but the demand on
especially how the booster is operated by now has changed
considerably. Table 2 lists the differences.

Table 2: Feature Disparity of Prior Framework

Feature Booster Storage Ring
Manual control possible no partially

Pre-defined ramping yes no
Energy based ramping no yes

Custom waveforms no yes

IMPLEMENTATION
Based on the considerations above and the criticality of

the LLRF control service, where even small changes might
have unintended but severe side-effects, the decision was
made to fully reimplement this service from scratch. A key
decision was made to switch to Python, which has seen
widespread usage increase across our institute, from core
accelerator services to machine learning applications [6].

Control System Integration
SoftIOC is a Python module which allows for creating an

EPICS IOC which runs from within the Python interpreter
supporting concurrency [7]. This allows creating an appli-
cation which seamlessly integrates into our control system,
as well as providing the option to include modules from the
Python ecosystem (see Fig. 2).

Python Integration
The LLRF SoftIOC makes use of a set of modules referred

to as the KIT Accelerator Python Tools [8]. These modules
allow for an (internally) standardized and maintained access
to common resources such as network storage, electronic
logbook, data archive, system logging, measurement data
handling, and shared routines across our other SoftIOCs.

13th Int. Workshop Emerging Technol. Sci. Facil. Controls PCaPAC2022, Dolní Brežany, Czech Republic JACoW Publishing

ISBN: 9 7 8 - 3 - 9 5 4 5 0 - 2 3 7 - 0 ISSN: 2 6 7 3 - 5 5 1 2 d o i : 1 0 . 1 8 4 2 9 / J A C o W - P C a P A C 2 0 2 2 - T H P 2 0

User Interfaces and Tools

THP20

87

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Figure 2: LLRF SoftIOC environment. SoftIOC allows
seamless integration of our control system, the LLRF sys-
tems, our internal Python tools and access to the general
Python ecosystem.

Access to other data points in the control system is provided
using the caproto module [9].

Code Maintainability
To increase long term maintainability, common practices

used in software engineering were applied, such as strict
formatting rules and the requirement to document any public
function, method and class. Tests are used to make sure that
the behaviour of the code is kept consistent, also making it
easier to implement potential changes in the future. Git in
combination with a continuous integration workflow allows
automatically running the tests as well as making sure that
the code quality standards are being fulfilled before code
can be added to the main code branch.

FEATURES
All features are available in both the booster and storage

ring environment. In addition, each automation routine can
be individually switched on or off, which allows the user to
interact with the LLRF systems in varying degrees of semi-
or fully manual control, if needed.

Event Logging
Certain events can automatically trigger the generation

of a report for our electronic logbook [10]. For example,
an interlock event during operation conditions causes the
LLRF system interlock chain to be read out. Based on this
information the software classifies the interlock as internal
or external. In case of an internal interlock the waveforms
of the RF signals are read-out and are attached as a plot to
the report together with information regarding the current
configuration of the LLRF system. Also, certain special rou-
tines during beam studies can create an entry to the logbook
specifying the beam conditions and parameters used.

Simulator Mode
While tests of the Python code make sure that the func-

tions behave as expected, the actual interaction with the
LLRF hardware or the control system in general cannot be
automatically tested. The simulator mode allows replacing
either the process variables from the control system, such
as the beam energy, or the process variables of the LLRF

system. This is achieved by running a simulator SoftIOC
which provides the necessary mock-up process variables as
well as rerouting the process variables in the actual LLRF
SoftIOC. In addition, the LLRF part can also be configured
to use a LLRF spare unit if the actual hardware response is
required.

State Machine Integration
With the updates of the LLRF system firmware, an internal

state machine was added. Although this state machine can-
not be used as a substitute for our typical operation modes,
neither in the storage ring nor in the booster, it can take over
interlock recovery, initial tuning and ramping down of the
cavity fields. This allows removing a considerable amount
of code and logic complexity, which was previously required
for the initial start up of the LLRF system.

Measurement Routines
Thanks to having access to the Python ecosystem, in-

cluding signal processing and fitting toolkits, more complex
measurement or calibration routines can now directly be
implemented in the LLRF SoftIOC code. One example is
the calibration of the cavity voltage based on the measured
synchrotron frequency 𝑓s and subsequently a voltage scan
to determine the momentum compaction factor 𝛼c.

A more complex example is the implementation of pre-
cise phase or amplitude modulation of the cavity fields. This
requires a measurement using the internal network analy-
ser and a numerical solution based on the ratio of Bessel
functions [11], whereas the user input only requires the de-
sired modulation frequency and amplitude. To evaluate the
modulation, a sequence for reading out the internal wave-
form is planned, which involves temporarily changing the
acquisition engine from interlock detection to continuously
measuring the field, taking a measurement, and switching
back to interlock detection.

SUMMARY & STATUS
The dynamic range of operation modes at KARA creates

a dynamic demand on our LLRF systems, from fully auto-
mated and transparent operation, to complex, semi-manual
active measurements. Our approach for the LLRF SoftIOC
represents a modular concept using Python, relying on ro-
bust implementations of independent modules from control
system, file and logbook integration up to the inclusion of
complex measurement routines with a strong focus on main-
tainability and extensibility. While not yet in production,
first live tests in the booster are foreseen in the coming weeks.

REFERENCES
[1] LLRF9, https://dimtel.com/products/llrf9

[2] EPICS Control System, https://epics-controls.org/

[3] B. Kehrer et al., “Time-Resolved Energy Spread Studies at
the ANKA Storage Ring”, in Proc. IPAC2017, Copenhagen,
Denmark, May 2017, pp. 53–56.
doi:10.18429/JACoW-IPAC2017-MOOCB1

13th Int. Workshop Emerging Technol. Sci. Facil. Controls PCaPAC2022, Dolní Brežany, Czech Republic JACoW Publishing

ISBN: 9 7 8 - 3 - 9 5 4 5 0 - 2 3 7 - 0 ISSN: 2 6 7 3 - 5 5 1 2 d o i : 1 0 . 1 8 4 2 9 / J A C o W - P C a P A C 2 0 2 2 - T H P 2 0

THP20

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

88 User Interfaces and Tools



[4] A. Mochihashi et al., “Detuning Properties of RF Phase Mod-
ulation in the Electron Storage Ring KARA”, pre-print: Nov.
2021. doi:10.48550/arXiv.2111.15555

[5] J. Steinmann et al., “Increasing the Single-Bunch Instability
Threshold by Bunch Splitting Due to RF Phase Modulation”,
in Proc. IPAC’21, Campinas, SP, Brazil, May 2021, pp. 3193–
3196. doi:10.18429/JACoW-IPAC2021-WEPAB240

[6] P. Schreiber et al., “Ocelot integration into KARA’s control
system”, presented at PCaPAC’22, Prague, Czech Republic,
paper THP16, this conference.

[7] pythonSoftIOC: An EPICS IOC within the Python interpreter,
https://dls-controls.github.io/pythonSoftIOC

[8] J. Gethmann et al., “Simple Python Interface to Facility-
Specific Infrastructure”, presented at PCaPAC’22, Prague,
Czech Republic, paper THP17, this conference.

[9] caproto: A pure-Python Channel Access protocol library,
https://github.com/caproto/caproto

[10] ELog, Electronic Logbook package
https://elog.psi.ch/elog/

[11] D. Teytelman, “Phase modulation in storage-ring RF sys-
tems”, e-print: Jul. & Sep. 2019.
doi:10.48550/arXiv.1907.01381v2

13th Int. Workshop Emerging Technol. Sci. Facil. Controls PCaPAC2022, Dolní Brežany, Czech Republic JACoW Publishing

ISBN: 9 7 8 - 3 - 9 5 4 5 0 - 2 3 7 - 0 ISSN: 2 6 7 3 - 5 5 1 2 d o i : 1 0 . 1 8 4 2 9 / J A C o W - P C a P A C 2 0 2 2 - T H P 2 0

User Interfaces and Tools

THP20

89

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I


