
A MODERN C++ MULTIPOCESSING DOOCS
CLIENT LIBRARY IMPLEMENTATION

S. Meykopff†, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany

Abstract
At the DESY site in Hamburg/Germany the linear accel-

erators FLASH and European XFEL are successful oper-
ated by the control system DOOCS. DOOCS based on the
client–server model and communicates with the matured
SUN-RPC. The servers are built with a framework which
consists of several C++ libraries. The clients use a DOOCS
client library implementation in C++ or Java. In the past
years the public interface (API) of the C++ client library
was refined. But modern C++ features like futures are not
provided in the API. Massive multi-processing, parallel
communication, and optimized names resolution could im-
prove the overall communication latency. The usage of the
standard C++ library, the limit of external dependencies to
ONC-RPC (former SUN-RPC) and OpenLDAP, and the
reduction of the code size, increases the maintainability of
the code. This contribution presents an experimental new
client C++ library which achieves these goals.

BIRDS EYE ON DOOCS
The DOOCS control system uses the proven ONC-RPC

(formerly SUN-RPC) for data transmission. To establish a
connection to an ONC-RPC server, you need a host name
and a port number. A DOOCS address must therefore first
be resolved into a combination of host name and port num-
ber. This resolution is started via an LDAP query. If the
server locations are served via multiple servers, all required
information is available in the LDAP response. If all loca-
tions are answered via a single server, the existing locations
can be queried via an RPC call to these servers.

Address Resolving with LDAP
The LDAP connection is established with OpenLDAP.

First a connection to the LDAP server must be bound via
ldap_simple_bind_s(). The single queries are then made
with ldap_search_ext_s(). Depending on which entries are
searched for, the distinguished name (DN) must be created
at runtime. The DN consists of the following Relative Dis-
tinguished Names (RDN) "location", "device", "facility",
"dc". The filter consists of a string with a "server-mask"
and partly "device" as logical link. The last parameter to be
specified is the scope in which to search. This also depends
on which DOOCS address part is searched for. The con-
nection to the LDAP server can be reused until all address
resolutions are finished. At the latest at the end of the pro-
gram the connection must be closed with ldap_unbind(). A
sequence diagram is shown in Figure 1.

LDAP Answer
The LDAP query response contains these fields: "facil-

ity", "device", "location", "property", "server", "host",

"channel", "protocol", "lib-prog", "server-mask", "status".
The first four are part of the DOOCS address. The fields
"host" and "lib-prog" are needed to connect to a DOOCS
server. The two fields contain the above mentioned connect
information for the RPC call. When searching for loca-
tions, the "property" field remains empty.

Figure 1: Address Resolving.

Authorization
To establish an RPC connection, authorization must first

be performed. The authorization is provided by the authu-
nix_create() function. The function requires the target host
name, the (Unix) user ID and the group ID of the person to
be logged in as parameters. The authorization is valid for
all threads of a task until the auth_destroy() function de-
letes it again.

RPC Bind
A connection to the target server will be opened with

clnt_create(). The function needs the host name as param-
eter and the port number determined above as parameter.
The choice whether UDP or TCP is used as protocol must
now be made. However, UDP is not used in DOOCS be-
cause the RPC messages may otherwise have a maximum
of 8 kbytes of coded size. The function expects the protocol
type as string. After the connection has been established, ___

† sascha.meykpoff@desy.de

13th Int. Workshop Emerging Technol. Sci. Facil. Controls PCaPAC2022, Dolní Brežany, Czech Republic JACoW Publishing

ISBN: 9 7 8 - 3 - 9 5 4 5 0 - 2 3 7 - 0 ISSN: 2 6 7 3 - 5 5 1 2 d o i : 1 0 . 1 8 4 2 9 / J A C o W - P C a P A C 2 0 2 2 - T H P 0 7

THP07

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

62 Control Systems

the function returns a client pointer. The authorization cre-
ated above must now be entered in the cl_auth field. From
now on the connection can be used for communication with
RPC messages.

Serialization with XDR
The core of RPC communication is a function call on

another system. Not only must a function be started over
the network, but function parameters or return value must
also be transferred. These parameters must be serialized.
Since the foreign system or also the transmission layer can
use another byte order, the serialization must consider this
also. ONC-RPC describes the parameters in its own lan-
guage. An RPC specification (XDR) contains a number of
definitions. The language supports scalar data types, ar-
rays, constants, enumeration, struct, and union. The param-
eter description is normally stored in .x files. The program
rpcgen creates from the .x files client and server stubs in C.
To remain compatible to DOOCS the original DOOCS
source files are used. The DOOCS library encapsulates the
data in EqData objects. These simplify the copying of the
data considerably. For simplicity, these EqData objects are
also used for this project.

Figure 2: RPC Sequence Diagram.

Remote Call
To do a data exchange, the ONC-RPC function

clnt_call() is called. The function expects the client handle,
the proc number and a timeout. The proc number is an enu-
meration on get, set, or get_name. A pointer to a
param_block structure describes the data to be sent. The
structure consists of a pointer to an EqNameString struc-
ture and a pointer to an EqDataBlock structure. In the
EqNameString the parts of the destination DOOCS address
must be entered. The EqDataBlock structure is the funda-
mental DOOCS data container. This container consists be-
side some timestamps and error codes mainly of the

DataUnion structure. The DataUnion structure has the field
data_sel, which specifies the DOOCS data type. In the fol-
lowing union all DOOCS data types are described. How
the union is evaluated depends on the data_sel field.
Graphic 2 provides an overview.

Return Value and Cleanup
How the structure must be serialized is communicated to

the clnt_call() function via a pointer to the data generated
with rpcgen. The return value of the RPC call is written to
an EqDataBlock structure which is also passed. This struc-
ture must also be described by a pointer on an RPC speci-
fication. The clnt_call() call is blocking. It returns a
clnt_stat parameter as status, which is RPC_SUCCESS if
successful. The EqDataBlock structure of the return param-
eter is allocated with malloc by the clnt_call() function. If
the structure is no longer needed, it must be freed using
clnt_freeres(). An unused connection is closed with
clnt_destroy().

Receive Location Information
If you need to retrieve the list of locations or properties

from a server, this is done via a modified RPC call. Instead
of the proc number for get, the enumeration value for
get_names is used. The location and the property name
parts of the DOOCS address remain empty. The response
from the server is a list of USTR data types. The USTR
type contains among other things a string. Here the location
name is stored.

Receive Location Information
In the following, a use case is considered where different

control system values are read in simultaneously during a
measurement. The classic DOOCS API makes several
synchronous blocking RPC calls here. Here the addresses
are resolved one after the other and then the blocking
clnt_call is called in each case. A full sequence is shown
in Fig. 2.

OPTIMIZATION
The first optimization concerns the API. If the data is

returned directly in the API, it is also necessary to wait
until the data has been transported completely. The
experimental API returns only one std::future. In the API
a thread serves the corresponding std::promise. If the data
has arrived, the method set_value() of the promise is called.
The method set_exception() is used in an error case. The
client can wait using the wait() methods of the future until
the data arrived. In the meantime, the client can start other
requests, or do something else. If the wait function signal
returns, the client can fetch the data with the get() method.
In the best case the client waits now maximally for the
time of the slowest call.

Parallel LDAP Calls
By simply replicating an LDAP database, several servers

can easily be set up in parallel. Normally, these are backup
servers that step in when one server is unavailable. An
optimization is obvious at this point. The LDAP queries

13th Int. Workshop Emerging Technol. Sci. Facil. Controls PCaPAC2022, Dolní Brežany, Czech Republic JACoW Publishing

ISBN: 9 7 8 - 3 - 9 5 4 5 0 - 2 3 7 - 0 ISSN: 2 6 7 3 - 5 5 1 2 d o i : 1 0 . 1 8 4 2 9 / J A C o W - P C a P A C 2 0 2 2 - T H P 0 7

Control Systems

THP07

63

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

put into a queue. A thread pool then processes the queries
in parallel. A separate thread is used for each LDAP server.
This allows multiple LDAP servers to be used simultane-
ously. A connection to the LDAP server should not be ter-
minated immediately. Since it cannot be predicted when
the next LDAP query will occur. A timer should terminate
unused connections after a defined time.

Parallel RPC Calls
The RPC call can also run in parallel. In this case, com-

munication with each server takes place via a separate
thread. To conserve the resources of a client system, an up-
per limit for threads should be observed. In this case, a
thread must process several connections. More than one
connection to a server must be prevented at the moment,
since it is not yet known whether the servers are internally
multi-threaded. Also, the RPC connections are not closed
after the last access. The slow connection setup must oth-
erwise be restarted for future queries. A timer must also
close unused connections after a certain time. A full se-
quence of two parallel calls is shown in Figure 3.

Figure 3: RPC Optimization.

IMPLEMENTATION
At the beginning, the API shall only support an asyn-

chronous query of DOOCS properties. The method call in
the RPC_API object is defined as follows:

 std::future<std::unique_ptr<EqData>> read(
 const std::string &doocs_address,
 EqData *send_data
);
The doocs_address parameter contains the DOOCS ad-

dress in the complete form ("FAC/DEV/LOC/PROP") and

is separated internally into the individual address parts. The
EqData parameter is a pointer. So that the passed data can
be released or processed immediately after the end of the
function, the EqData data block must be saved internally.
The return value is a std::future with a std::unique_ptr on
an EqData data block as described above. The scope of the
internally generated EqData block is shifted to the user
code by the unique_ptr. If the user does not need the block
any more, it is released immediately. The proceeding
should prevent memory holes. The use of EqData is purely
a convenience decision. The EqData object provides easy
access to all data types and also handles the copying of
data.

RPC_INFO Object
If the API works with std::future, a std::promise must be

managed internally. The std::promise must not be answered
until the data request is finished. The promise is saved with
other information such as the parts of the DOOCS address,
data to send, timeout information, host server names and
port numbers. On the first call in the experimental API the
necessary information is copied into a rpc_info object. The
rpc_info object can now be moved to the individual pro-
cessing queues. At the end of the processing chain the
promise is answered and the rpc_info object will be freed.

LDAP Cache
The already resolved LDAP requests are stored in a

ldap_cache class. A std::unorderd_map holds the data and
a mutex provides thread safety. Still within the get()
method of the rpc_api class, the ldap_cache is searched for
an entry. If none is available yet, the rpc_info object is put
into the queue for LDAP query.

LDAP Queue
The ldap_queue is a std::queue which takes the rpc_info

object. A thread pool get the data from the queue and starts
the LDAP requests. Successful requests are recorded in the
ldap_cache. For this purpose, a std::function object is de-
fined in the rpc_info object. The function references the
ldap_cache object and will be used as a callback. Thus the
ldap_queue has no dependency to ldap_cache. Testing the
ldap_queue is made easier by having fewer dependencies.
If the LDAP query is not yet sufficient the server is queried
via RPC. The rpc_info object is pushed into the RPC queue
described later. Once the name resolution is complete, a
second std::function is used as a callback back into rpc_api.
In the scope of rpc_api, the RPC_INFO structure is moved
into the rpc_scheduler.

RPC Scheduler
The dispatch() method of the rpc_scheduler object re-

ceives the rpc_info object. The rpc_scheduler has a
rpc_dispatch object for each RPC connection. The rpc_dis-
patch object consists of a thread and a rpc_info queue. If
no rpc_dispatch exists for the RPC connection, a new
rpc_dispatch object is created. In the constructor of
rpc_dispatch a rpc_auth object is necessary. Later the

13th Int. Workshop Emerging Technol. Sci. Facil. Controls PCaPAC2022, Dolní Brežany, Czech Republic JACoW Publishing

ISBN: 9 7 8 - 3 - 9 5 4 5 0 - 2 3 7 - 0 ISSN: 2 6 7 3 - 5 5 1 2 d o i : 1 0 . 1 8 4 2 9 / J A C o W - P C a P A C 2 0 2 2 - T H P 0 7

THP07

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

64 Control Systems

rpc_auto object will authorize the communication. The dis-
patcher now moves the rpc_info data into the rpc_dispatch
object. The thread of rpc_dispatch will take an entry from
the queue and continue with the processing. For the RPC
call a connection to the server must exist. Therefore
rpc_dispatch has a rpc_connection_map object. The object
stores each connection in an unordered_map. This is im-
portant when rpc_dispatch needs to make queries to multi-
ple servers. A centralized map is not possible because in
the current ONC-RPC implementation each thread must
establish its own connection. The rpc_connection_map ob-
ject now creates a server connection and also terminates it
when the rpc_connection_map is cleaned up. The RPC
handle can now be read from the rpc_connection_map ob-
ject and the RPC call can be performed. Once this is fin-
ished, the res_block structure is transformed into an
EqData object and copied into a std::unique_ptr<EqData>.
This will be moved into the callback. The callback ends up
in a method in the rpc_api object. The rpc_api scope moves
the value into the std::promise. Now the rpc_info object is
released and the query is finished.

MEASUREMENT
For the operation of the machines European XFEL and

FLASH mainly JDDD is used. JDDD structures the data in
so-called panels. The data read from the control system is
displayed there. During a shift handover at the machines,
screenshots are printed from the main panels into the elec-
tronic logbook. In total, there are about 30 screenshots. To
get a valid collection of DOOCS addresses, these panels
were opened simultaneously and the list of currently used
DOOCS addresses were written to a file. The list contained
about over 12000 entries. Duplicate entries, addresses of
foreign control systems, one particularly slow server, and
unreachable addresses were removed from the list, leaving
just over 2800 usable DOOCS addresses pointing to
287 servers.

Timing Results
By getting the data from all addresses the runtime of the

classic DOOCS library and the experimental library was
measured. The results are shown in Table 1.

Table 1: Runtime Results
Code Runtime No. Threads
Classic 280s +-34s 1
Exp. 13s +- 1s 100
Exp. 13s +- 2s 50
Exp. 31s +- 8s 25
Exp. 64s +- 11s 10
Exp. 105s +- 12s 5
Exp. 143s +- 11s 2
Exp. 170s +- 21s 1

Figure 4 shows when the individual operations of the

Classic DOOCS library are finished. About 200 queries re-
quire a total of 90s. A peak of 6 seconds (not plotted) for

one call was measured. These slow responses are the lower
limit for the experimental library.

Figure 4: Runtime of finished RPCs.

Runtime Histogram
In the experimental library case Figure 5 shows a histo-

gram when (since program start) how many queries have
been completed. The most requests were finished after 10
seconds.

Figure 5: Runtime histogram.

CONCLUSION
In conclusion, the experimental library saves a consider-

able amount of time in this use case. The fact that the con-
nections are not closed immediately reduces the overhead.
The use of std::future with parallel communication corre-
sponds to modern hardware utilization. The classic
DOOCS library also offers asynchronous connections with
"monitors". However, these connections are not intended
for one-time communication. The experimental library of-
fers a similar function. However, this functionality needs
to be better implemented. Therefore, it has not been dis-
cussed in this paper. When planning the objects, it is a good
idea to implement them independently as possible. This
way, automatic tests can be used to ensure the quality of
the software. The amount of work time required for such a
project should not be underestimated. If it is not really nec-
essary, it is always recommended to use already finished
software.

13th Int. Workshop Emerging Technol. Sci. Facil. Controls PCaPAC2022, Dolní Brežany, Czech Republic JACoW Publishing

ISBN: 9 7 8 - 3 - 9 5 4 5 0 - 2 3 7 - 0 ISSN: 2 6 7 3 - 5 5 1 2 d o i : 1 0 . 1 8 4 2 9 / J A C o W - P C a P A C 2 0 2 2 - T H P 0 7

Control Systems

THP07

65

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

