©=2d Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

13th Int. Workshop Emerging Technol. Sci. Facil. Controls

ISBN: 978-3-95450-237-0 ISSN: 2673-5512

PCaPAC2022, Dolni Brezany, (zech Republic

JACoW Publishing
doi:10.18429/JAColl-PCaPAC2022-FR013

PROGRESSION TOWARDS ADAPTABILITY
IN THE PLC LIBRARY AT THE EuXFEL

T. Freyermuth®, S. T. HuynhT, B. Baranasic, M. Bueno, N. Coppola, G. Giovanetti,
S. Hauf, N. Jardén Bueno, N. Mashayekh, A. Silenzi, M. Stupar, M. Teichmann,
J. Tolkiehn, L. Feltrin Zanellatto, P. Gessler, EuXFEL, Schenefeld, Germany

Abstract

In 2011, the European X-Ray Free Electron Laser (Eu-
XFEL) commenced parallel developments of their control

> system (Karabo) and the Programmable Logic Controller

(PLC) library. The PLC library was designed to control
basic beamline components and under as set of initial as-
sumptions, the automation component was deferred to the
control system layer. After five years of operation, it can be
seen that not all initial assumptions scaled well to the opera-
tional needs of the facility resulting in limitations hindering
progress. Having identified the issues, the PLC development
is now focused on providing a more cohesive and adaptable
solution. In utilizing the IEC61131-3 (3rd edition) features,
the PLC library has been restructured towards a layered ar-
chitecture with loose coupling between function blocks. The
ultimate goal is to achieve a PLC library which is not only
test driven and capable of quickly integrating in new devices,
but can achieve dynamic linking not only between hardware
and software, but also across software devices, aiding the
rapid development of more complex hardware integration
and higher-level automation.

INTRODUCTION

Programmable Logic Controllers (PLCs) have been his-
torically used to provide control and automation of larger
systems, and this is no different at the European XFEL
(EuXFEL)[1]. To further optimise the generation of PLC
projects, a library has been developed to provide buildings
blocks, which are pieced together to form the backbone of a
PLC project. While initially developed to reduce develop-
ment time for PLC projects, the PLC library also incorpo-
rates a bespoke communication protocol and provides func-
tionality which over time became less efficient and harder to
expand upon. As such, a new version of the library is under-
way, addressing some of the short-comings of the original:

* A strictly layered architecture that is testable

* Dynamic linking is provided by the TwinCAT Hard-

ware Abstraction Layer (TcHAL)

* An enhanced communication protocol

 Simpler inter-device and inter-plc communication

* Additional tools

Paving the way for dynamic, adjustable and configurable
complex automation processes, which can easily be devel-
oped and tested, whilst leaving room for future changes in a
completely disentangled manner.

* Tobias.Freyermuth@xfel.eu
T Sylvia.Huynh@xfel.eu

FRO13
102

CURRENT LIBRARY

The current PLC library is built up of a collection of
software representations of hardware devices, which are
known as softdevices. During early development, it was
a priority to ensure that the rapid deployment milestones
of PLC projects were met. The softdevice building blocks
aided quick delivery through device instantiation, ensuring
conformity amongst hardware devices performing a similar
function set, and creating a simplified way with how these
devices interact with the Supervisory Control and Data Ac-
quisition (SCADA) system known as Karabo [2]. Using
a TCP/IP communication protocol developed in-house, a
connection header entailing basic device class information
known as a self-description provided the SCADA system
with a means to obtain information to aid User Interaction
(UI). As the number of PLC projects grew in size, it became
relevant to ensure a means for peer-to-peer communication
between softdevices, in addition to basic equipment pro-
tection. This was achieved through shared variables and
interlocks - a set of conditions which when met, would trig-
ger a set of actions. Lastly, an additional tool called the PLC
Management System (PLCMS)[3] was developed to aid the
automatic generation of PLC projects with linking between
the hardware Input and Output (I/O) and the previously de-
fined softdevices. The structure of the current library can
be seen in Fig. 1.

FUTURE LIBRARY

Building on from the lessons learned thus far in regards to
the existing PLC library, this section will explore the changes
planned for the next version of the EuXFEL PLC library,
and how they work and will be integrated.

PLC Library Goals

Whilst the current library is functional, it is hoped that the
many limitations that are currently imposed due to historical
design decisions can be overcome in the next version. As
many of the previous requirements remain valid, this section
details on how they can be enhanced or evolved. Addition-
ally, new requirements, which will facilitate to provide better
building blocks for future PLC projects are introduced.

A Complete Self-description of the PLC A highly im-
portant feature of the current library is the self descriptive
nature of the PLC. When a connection is made to the PLC
(via a TCP client), the PLC will send a description of all
the devices currently on it. While incredibly useful, the
self-description is still lacking some features for true com-

Hardware Technologies and Component Integration, System Modeling and Automation

13th Int. Workshop Emerging Technol. Sci. Facil. Controls
ISBN: 978-3-95450-237-0

Data Structure

| POU instance

Karabo Server
(BeckhofiCom)

‘ TCP-Server ‘

e] collect

mess?lges

J—Md messag

Input Buffer

Output Buffer

collect
messages

collect
messages
collect
messages

Send TCP
message

Sd_Analoginput

Send TCP
message

Sd_AnalogQutput

message
Sd_Valve

‘ Send TCP

isOpen i=Closed Coil
Signal Signal Signal

Al value Al value

Process Image
of Inputs

Process Image
of Outputs

Figure 1: Structure of the Current Library.

pleteness. Firstly, it would be helpful for a textual description
of each command and property to also be sent to the con-
trol system. This is currently only available in the online
documentation of the library and not linked to the control
system where it is used. Additionally, a description of the
error states should be added provide context in comparison
to the existing error code. These additional features could
overcome the need for manual development of the corre-
sponding devices on the control system, known as “Karabo
devices”.

Partial Regeneration and Handling of Custom Code
in Projects The process of building a PLC project is auto-
mated to a high degree at EuXFEL, but the way it is currently
implemented requires a complete re-build of the entire solu-
tion, overwriting any code that had been previously added.
Despite the feature-richness of the tools available, this com-
plete regeneration process has caused many issues when only
a minor change is required. Due to these limitations, the
future library and associated tools need to be more flexible,
providing the ability to generate one or a set of sections of
the PLC project, or a particular feature set.

Additional Abstraction of the Library The current
version of the library does not utilize abstraction layers in
the architecture, and so all softdevices have to deal with all
the various functional layers that exist in the library. While
developing a softdevice, the developer has to bear in mind
very low level details of the terminals that might be con-
nected to the softdevices while at the same time considering
high level aspects, such as how to structure the interface for
the end user, who interacts with the softdevice through the
control system. To faciliate understanding and implementa-

Hardware Technologies and Component Integration, System Modeling and Automation

PCaPAC2022, Dolni Brezany, (zech Republic
ISSN: 2673-5512

JACoW Publishing
doi:10.18429/JAColl-PCaPAC2022-FR013

tion of softdevices, it is planned to add a layered architecture
to the future library. This should reduce the complexity of
softdevices and thereby reducing the likelihood that bugs
are introduced, while producing testable code. A useful fea-
ture when tackling new softdevices. In addition to this, it is
foreseen that a higher layer to cover additional automation of
systems and processes e.g. to handle beamline components
may be desired. See Device Abstraction Layer.

Relinking on Runtime There have been instances when
during operational periods, hardware (EtherCAT termi-
nals/channels) had to be reallocated. Within the current
library, hardware 1/O are directly linked to the softdevice.
This is a severe restriction due to the fact that most of the
links can only be relinked with a rebuild and redeploy of the
TwinCat configuration - something which is not possible dur-
ing operation of the system. The future library will overcome
this limitation through the additional TcHAL and an inter-
face manager. All EtherCAT terminals will be abstracted by
a dedicated call per terminal type, where all terminals and
channels will also have a defined interface. These interfaces
will on runtime be registered with the “interface manager’
Programming Organisation Unit (POU), implemented as a
singleton within the TcHAL, which, is responsible for han-
dling both the interfaces to the TCHAL and the propagation
of information to any compatible softdevice.

)

Generate Terminal I/O Linking Map Extending on
from the ability to relink hardware during run-time, the in-
formation related to the current linking should be obtainable
such that any previous wiring diagrams can be amended to
reflect reality. Currently, there is no way to keep track or
compare what has been configured, to what is expected. Not
only does this hamper debugging, but it also adds confusion
and produces unreliable documentation. Further utilisation
of the configuration service tool will enable the exporting
of this information.

Simplified Peer-to-Peer Communication Functional-
ity for communication between softdevices already exists,
however it does so in a rather complicated manner and in-
volves a deep understanding of the device implementation.
Softdevices are required to send “pairs” to other devices to
issue commands or read and write requests, more or less
utilising the same interface methods as the control system.
This is not developer friendly or easily human-readable. An
alternative method is to use a globally defined shared mem-
ory, which enables softdevices to read a predefined set of
values for any softdevice on the system, again, requiring in
depth knowledge as it is up to the developer of a softdevice
to decide which properties are put into this shared memory.
As this information is not self describing, this is a fragile
way to exchange information, requiring type casting of each
property, while considering that a data type might change
over time.

Testability of the Library The structure of the current
library makes it very hard to test individual aspects, func-
tions and components, which in turn makes it practically

FRO13
103

@©=2d Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©=2d Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

13th Int. Workshop Emerging Technol. Sci. Facil. Controls
ISBN: 978-3-95450-237-0

impossible to unittest. This leads to a situation where a
significant amount of manual testing is required, which is
time-consuming and highly error-prone. With the proposed
TcHAL, softdevices will become largely decoupled from the
hardware and also from the SCADA system communication
via the means of dedicated wrapper classes. As such, soft-
devices can be tested within each interface, and interaction
between each level of abstraction can be completed with its
own test case, opening up a better way to perform testing.

Resolve the Interlock Feature of the Current Library
The current library implements a feature called “interlock”,
which allows a device to react in defined ways upon a set of
predefined conditions. The interlock feature is intended to be
used for equipment protection, however, over time has been
extended to perform automation on the PLC as well, which
is needed where a specific reaction time has to be achieved.
The implementation of interfaces as well as layers within
the future library will allow us to overcome the rigidity of
the feature as currently implemented. The new structure
will enable peer-to-peer interaction in a much more diverse
and safer fashion. Combined with Simplified Peer-to-Peer
Communication, it would be possible to write devices where
the “interlock” feature becomes redundant.

Simplified Device Development Due to the implemen-
tation of layers and interfaces that are tailored to the needs
of the PLC device developer, developing devices will be-
come simpler and more efficient. This will open up the
ability for “beamline component” experts to write their own
devices, initially within the projects, then, eventually imple-
mented within the “beamline component layer” of the library.
Needless to say, the transformation of specific devices imple-
mented by a “beamline component” expert within a project
into a generic device becoming part of the future library,
will be a joint effort of the “beamline component” expert
and a PLC library developer.

Self-contained PLC System In order to make the PLC
systems at EuXFEL self-contained, it is necessary to imple-
ment a solution to store and restore configuration data of
PLCs on the Industrial PC (IPC) that is running the PLC.
To be able to restore the previous configuration state of the
PLC after a restart as well as after an update.

Structure of the Library

The structure of the future library will consist of at least
two different layers; one for the hardware (field bus ter-
minals) abstraction, provided by TcHAL, and one for the
softdevice implementation, otherwise known as the Device
Abstraction Layer (DAL). Communication between com-
ponents across different layers will be carried out through
interfaces, a concept within the IEC 61131-3 3rd edition
which was not yet available when development of the ini-
tial library began within the TwinCAT 2 environment. The
structure of the current library can be seen in Fig. 2.

Hardware Abstraction Layer The Hardware Abstrac-
tion Layer (HAL) provided by the library TCHAL is intended

FRO13
104

PCaPAC2022, Dolni Brezany, (zech Republic
ISSN: 2673-5512

JACoW Publishing
doi:10.18429/JAColl-PCaPAC2022-FR013

to abstract the EtherCAT fieldbus terminals. The TcHAL
provides POUs for each fieldbus terminal used at EuXFEL.
It will configure the terminal according to its configuration,
provided through a configuration interface of the terminal-
POU. Data will be periodically exchanged with the terminal
via the EtherCAT master and translated into meaningful
units, preferably in International System of Units (SI) where
possible. Other components of the system will then obtain
these values as required. These interfaces will be tailored to
the needs of components of the DAL, see Device Abstrac-
tion Layer. As a result, the HAL aims to provide a clean
and easy to interface into the hardware for the DAL device
developers.

Device Abstraction Layer The DAL which sites above
the HAL, will be the second layer of the future library as
seen in Fig. 2. It is on this layer that softdevices are to
be implemented, without the complexity of any hardware
configuration.

DAL Layer
TCP-Server
HAL Layer -

Data Structure

POU instance

Karabo Server
(BeckhoffCom)

“- Add message -+,
: @
<nterfacen
1_Karabo_TCP_wrapper ;

2 ; A 7 A ,‘iddmesxaﬂ

; Add message |

(o)
(o)
|

oo Useo,

TwinCAT HW link—*

e+ Use ntertace--+-- 3>

----- Implement Interface--{>

U

ainterfaces
I_presure_input

[SD_GAUGE_XY J

ainterfaces |-
I_PID i
[SD_PID]

«interfaces

- cinterfaces
I_voltage_input

I_current_input

ainterfaces
I_current_output

«interfaces

I_proportional_input I_proportional_output

("A0_current_channel |
[#ao_current_channel |
x

Process Image]
of Inputs

(AL current_channel)
[TAlcurrent_channel |
=

Al_volatge_channel |
‘A_volalge_channel |
=

("AI_volatge_channel]
[TAi_volatge_channel |
5

‘ fOELM02 + ‘ ‘

EL3062 ‘ ‘ EL3052 ‘ ‘ i EL4012 ‘ |

Figure 2: Structure of the Future Library.

Communication Protocol

The future library will implement an extended version
of the custom TCP-protocol of the current library. This is
predominately required to overcome the limitations seen
during operation, specially with large PLC-projects which
encompass hundreds of devices.

Extended Self-Description The current implementa-
tion of the self-description sends a list of all softdevices
on connect. It also sends a description of each softdevice-
class including all properties and commands, with the name,

Hardware Technologies and Component Integration, System Modeling and Automation

13th Int. Workshop Emerging Technol. Sci. Facil. Controls
ISBN: 978-3-95450-237-0

data type, access level, unit and unit prefix of the associated
properties and commands on a device-instance or object
level, and also for any type variations which deviate from
the standard device-instance. The future library will extend
this self-description with a description of each command
and property alongside the name, aimed at providing ad-
ditional information to the end user. Additionally, a map-
ping between available commands and properties for a given
Karabo state is planned. Beyond the existing message types,
an additional message type to define error codes with their
associated description is a future feature.

Separation Between Self-Description and Operation
The current version of the library implements the self-
description of the system on the same server (port) as oper-
ationally related communications. This is not ideal, since
the self-description is sent to the client on connect, not on
request. When this occurs, it creates a notably large load on
the client using a protocol which is not optimized for large
amounts of data, but rather for small amounts of data at high
data rates. It is planned to differentiate the data required
for operation: device state updates, reads and writes, and
command requests; and the self-description: description
of all devices on the system and associated details such as
which commands and properties are available. The new
self-description data will be provided on a dedicated port,
with JavaScript Object Notation (JSON) being the intended
format. This fits in nicely with the other planned changes
given its amenability strings.

Additional Tooling

The current PLC library uses a set of tools which where
predominantly implemented in Python, and one in C#. There
one commonality is that they are not part of the development
environment of the PLC developers. Some tools are part of
continuous integration (CI)-pipelines, and others are to be
used from the command line on dedicated development ma-
chines. Due to the fact that these tools were not envisioned
at the beginning of the current library development, they rely
on unconventional ways to retrieve the necessary informa-
tion from the library. Much of this information is gathered
through several iterations of source code parsing, which
makes the “interface” quite fragile. Given that the code
and/or comments written are not checked by the PLC com-
piler (IDE) or any subsequent build tool to ensure adherence
and compatibility, this process becomes highly susceptible
to error. This is exacerbated by the fact that errors may not
be caught until after the various CI pipelines have run, or
only during PLC project builds, making the entire process
tedious. In order to provide a more convenient and com-
prehensive solution for PLC developers, it is aimed to have
these tools integrated into the PLC IDE via plugins to Visual
Studio. In conjunction with the other changes planned for
the library, the parsing of source files will become redundant.
Ultimately, this means the tools will be re-written in a .Net
language as an overarching “Configuration Manager” as well
as a “Development Toolbox”.

Hardware Technologies and Component Integration, System Modeling and Automation

PCaPAC2022, Dolni Brezany, (zech Republic
ISSN: 2673-5512

JACoW Publishing
doi:10.18429/JAColl-PCaPAC2022-FR013

Check and Configure Connected Hardware The
“Configuration Manager” will be implemented as a tool to
check the configured hardware of a TwinCAT project. It
will retrieve all the necessary information with how to set
up each terminal of the project, based on the requirements
of the TcHAL POUs in the selected EuXFEL PLC library.
The settings are to be applied to the terminals, skipping over
and flagging those that are unsupported or incompatible.

Generate and Link TcHAL POUs In order to generate
and link all TCHAL POUs according to the hardware con-
figured in a TwinCAT project, the “Configuration Manager”
will contain a tool that provides the user with an easy-to-use
interface.

Apply EuXFEL Terminal Naming Convention Cur-
rently, there are two different naming conventions at Eu-
XFEL defining how to name automation components such as
fieldbus terminals and connected equipment. These naming
conventions are reflected within the hardware configuration
of TwinCAT projects and in the hardware abstraction. The
“Configuration Manager” plugin will contain a tool, that
will allow PLC experts to apply one of these naming con-
ventions to hardware configurations of a TwinCAT project
comfortably. This will reduce the work while using scanned
hardware, in this case TwinCAT applies generic names to
all scanned components, or switching from one to the other
naming convention.

Generate Device Skeleton To provide consistency
across the future library and projects with custom devices, a
tool to support device development is planned as a part of
the “Development Toolbox” plugin. It will allow the user
to generate a device skeleton on any layer (see Additional
Abstraction of the Library) of the future library (or project).
It will give the developer the opportunity to define which
interface(s) should be implemented and which name the de-
vice should have. It will then generate skeleton code for the
POU adhering to the EuXFEL PLC library naming conven-
tion, as well as boilerplate code to implement methods and
commands.

Generate Karabo Wrapper Class This tool which is
part of the “Development Toolbox” plugin, is to provide the
user with a POU template generator, which can be pointed to
an interface and is made available to the SCADA system in
order to ease implementation of the interface wrapper class.

EuXFEL PLC Linter Expanding upon the naming con-
vention tool, an additional feature will be a check function
which can be performed across the entire code base. It is
intended to be added to the “Development Toolbox” plugin.

Architecture Violation Checker In the long run, a fea-
ture to define architectural rules will also be added to the
“Development Toolbox” plugin. Additionally, a checking
feature will be provided to ensure the code adheres to the
defined rules.

FRO13
105

@©=2d Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

©=2d Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

13th Int. Workshop Emerging Technol. Sci. Facil. Controls
ISBN: 978-3-95450-237-0

Configuration Management

The current library does not have a proper concept to
handle persistent configuration data of softdevices. It is
envisioned to implement a dedicated configuration interface
on every POU that is required to handle persistent data. On
the IPC running the PLC, a service will be implemented
using Beckhoff’s ADS-protocol to retrieve and restore data
as requested by the POU. The data will be stored on the
IPC with the possibility of an additional backup in the event
that the IPC crashes. This approach will not only allow the
system to retrieve configurations after a restart or a power cut
of a PLC, but also after an update or partial reconfiguration
of a PLC.

MIGRATION STRATEGY

It is intended to perform the refactoring of the current li-
brary in four major steps while ensuring as much backwards
compatibility with the currently running projects, build tools
and finally, control system, as is feasible. If a new feature
breaks compatibility, as is the case with the evolved commu-
nication protocol (between the PLC and the control-system),
a migration strategy has to be formulated, to ensure adequate
uptime across all involved systems.

Hardware Abstraction Layer

The hardware abstraction layer will be added as soon as all
the terminals used at EuXFEL have been implemented in the
new library. As the existing softdevices are linked directly
to the hardware, all softdevices will have to be migrated one
by one to adapt to the new structure and interfaces provided
by terminal POUs of the TcHAL. To aid this process, a
compatibility adapter will be made available for the existing
devices, linking them to the new interfaces on the other side.
These adapters will be removed once all softdevices have
been migrated to incorporate in TcHAL interfaces.

Layers and Interfaces

In order to establish a layered architecture in the future
library, it is necessary to refactor all softdevices to imple-
ment commands and properties via methods organized in
interfaces. The refactoring can be completed softdevice by
softdevice, ensuring no unintended effects on the overall sys-
tem during the migration period. This will make it possible
to add the next layer onto the DAL. The TcHAL Hardware
Abstraction Layer will make up the second layer.

FRO13

PCaPAC2022, Dolni Brezany, (zech Republic
ISSN: 2673-5512

JACoW Publishing
doi:10.18429/JAColl-PCaPAC2022-FR013

Updated Communication Protocol

Lastly, migrating to a new communication protocol is
planned once the design has been completed and a client
is available. As soon as the self-description service, which
is serving the JSON self-description is done, the existing
implementation of all softdevices will be changed to not
send a self-description on connect anymore. The structure
of the future library enforces a decoupling between the soft-
device and communication component to the control system.
All new softdevices will be implemented following this ap-
proach, whereas the old devices will get adapters until they
are migrated internally.

Add Configuration Persistence

Softdevices that need to store/restore configuration pa-
rameters will make use of configuration interface they de-
fine, being implemented by configuration-devices. These
interfaces will be passed into the softdevice via a reference,
which will allow the softdevice to figure out if the interface
is implemented by a configuration-devices on runtime. If
this is not the case, the softdevices can make use of the old
hardcoded configuration values, which are passed via inputs.
This approach will make a piecemeal migration possible,
softdevice by softdevice.

SUMMARY

Through several years of refinement, it can be seen that the
existing PLC Library requires a significant restructuring. It
is hoped that though refined abstraction layers and advanced
tooling, we can achieve an easily (re)configurable PLC li-
brary which can provide further automation and efficient
development and deployment.

REFERENCES

[1] T. Tschentscher ef al., “Photon beam transport and scientific
instruments at the European XFEL,” Appl. Sci., vol. 7, no. 6,
p- 592, 2017. doi:10.3390/app7060592

S. Hauf et al., “The Karabo distributed control system,” J.
Synchrotron Radiat., vol. 26, no. 5, pp. 1448-1461, 2019.
doi:10.1107/S1600577519006696

S. Huynh et al., “Automatic Generation of PLC Projects Us-
ing Standardized Components and Data Models,” in Proc.
ICALEPCS’19, New York, NY, USA, 2020, pp. 1532-1537.
doi:10.18429/JACoW-ICALEPCS2019-THAPPO1

(2]

(3]

Hardware Technologies and Component Integration, System Modeling and Automation

