
AUTOPARAM, A GENERIC ASYN PORT DRIVER
WITH DYNAMIC PARAMETERS
Jure Varlec∗, Cosylab d.d., Ljubljana, Slovenia

Abstract
Implementing EPICS device support for a specific device

can be tricky; implementing generic device support that can
integrate different kinds of devices sharing a common inter-
face is trickier still. Yet such a driver can save a lot of time
down the road. A well-known example is the Modbus EPICS
module: the same support module can be used to integrate
any device that speaks the Modbus protocol. It is up to the
EPICS database to map device registers to EPICS records.
Because no changes to the driver code are needed to inte-
grate a device, a lot of effort is saved. At Cosylab, we often
encounter device controllers that speak bespoke protocols.
To facilitate development of generic drivers, we wrote the
Autoparam EPICS module. It is a base class derived from
asynPortDriver that handles low-level details that are
common to all generic drivers: it creates handles for device
data based on information provided in EPICS records and
provides facilities for handling hardware interrupts. More-
over, it strives to provide a more ergonomic API for handling
device functions than vanilla asynPortDriver.

INTRODUCTION
When it comes to putting together a control system, one

of the advantages of EPICS is that, given existing device
support, integrating devices requires little or no program-
ming: data that devices provide or consume is mapped to
process variables declaratively through records in an EPICS
database [1]. Because EPICS is not merely software, but a
vibrant community, lots of existing device support modules
are readily available [2]. Chances are, then, that integrating a
widely-used type of device into your control system requires
very little effort.

Of course, not all devices are widely used. Some are
brand new, some are niche, some may even be developed
specifically for a particular machine. In such a case, devel-
oping a new device support layer cannot be avoided. This is
an arduous task: device support represents a mapping from
device functionality to records. This means that a device
support layer is required for each record type of interest [3].
Much of this work is repetitive and results in pretty much
the same record-specific code across many different device
types. For this reason, the device support layer of EPICS
lends itself well to encapsulating the repetitive common code
in a reusable module.
asynDriver [4] is such a module. It has become the go-

to module for integrating new devices, and even whole data
processing pipelines [5]. Instead of implementing EPICS
per-record device support directly, one instead implements
one or more asyn interfaces to wrap the low-level device
∗ jure.varlec@cosylab.com

driver or communication protocol. These interfaces are
then used by asyn’s generic per-record device support layer
which covers pretty much all record types that are meant to
get data into or out of hardware devices. By using asyn, one
is thus saved from a fair amount of repetitive and error-prone
work: write one driver, support all records automatically.
The most straightforward way to create a device support
module based on asyn is to create a C++ class derived from
the asynPortDriver base class.

One can go a step further and recognize that some devices
are themselves “generic” in the sense that they are merely
front-ends to other devices. One example are programmable
logic controllers (PLC) which often serve as interfaces to
sensors and actuators. It is thus natural to desire an EPICS
module that would communicate with a particular type of
PLC in a generic enough manner to facilitate integrating
it into the control system regardless of which peripherals
are connected to it. There are, in fact, several such EPICS
modules available, the Modbus module [6] being a very nice
example. It allows integration of any PLC (or other device)
that speaks the Modbus protocol. With a device support as
generic as this, the “no programming” ideal mentioned in the
beginning is truly possible: the EPICS database defines the
mapping between Modbus registers and records, interpreting
and giving meaning to the raw data values contained in the
registers. Regardless of which peripherals are connected to
the PLC, no changes to the drivers are needed.

But the Modbus protocol is just one possibility, chosen
as an example because it is so widely known and used. As
with all devices and protocols, there are many generic ones
that are niche. Yet even for niche protocols, it makes sense
to implement a module as generic as the Modbus module. A
protocol may only be used at a single facility, yet that may
still mean that it is used in many different setups (e.g. with
different peripherals).

At Cosylab, we have helped with EPICS device support
for such generic devices many times now. We felt the pain
of doing the same kind of work several times. We have thus
decided to develop a C++ base class which encapsulates
the common functionality that needs to be implemented
by any generic device support code; most importantly, this
includes generating per-record handles dynamically based
on information provided in EPICS records. This C++ base
class builds on top of asynPortDriver, allowing us to
reuse the basic functionality provided by this asyn class,
and, crucially, to reuse the asyn per-record device support
layer. We found this module, called autoparamDriver [7],
to be generally useful, and are releasing it to the community.

13th Int. Workshop Emerging Technol. Sci. Facil. Controls PCaPAC2022, Dolní Brežany, Czech Republic JACoW Publishing

ISBN: 9 7 8 - 3 - 9 5 4 5 0 - 2 3 7 - 0 ISSN: 2 6 7 3 - 5 5 1 2 d o i : 1 0 . 1 8 4 2 9 / J A C o W - P C a P A C 2 0 2 2 - F R O 1 2

FRO12

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

98 Hardware Technologies and Component Integration, System Modeling and Automation



ai record,
DTYP=asynInt32,
INP=word 0x1234

device support,
asynInt32

asyn interface,
asynInt32

asynPortDriver,
readInt32

autoparamDriver,
read handler

for "word"

device variable,
16-bit word
at 0x1234

EPICS asyn autoparam device

Figure 1: An example of reading from a device, showing the layers involved, starting from an EPICS record. Note
how the DTYP field of the record specifies which asyn calls will be involved, while the INP field provides data for
autoparamDriver. Specifically, word refers to a device function that returns a 16-bit word; autoparamDriver uses this
in its implementation of asynPortDriver::readInt32() to find a read handler registered by a subclass. The other part
of INP, 0x1234, is used by the handler for word as an address on the device.

GOALS
autoparamDriver has several goals, listed here in order

of priority.

1. Allow the EPICS database to specify the mapping be-
tween process variables and device variables (e.g. de-
vice registers) without modifying the driver or device
support code.

2. Provide approachable documentation. asyn documen-
tation, is quite general and not very EPICS-oriented.1
The intent is to complement it with a gentler introduc-
tion to the concepts involved in writing a driver.

3. Reuse as many of asyn’s facilities as possible and sen-
sible. The intention is to save development time2 at the
cost of conforming to certain constraints imposed by
the asynPortDriver base class.

4. Support different paradigms of processing I/O Intr
records. Some examples: processing based on hard-
ware interrupts, from a periodic scan thread in the
driver, and on writing to a register from another record.
asyn does a good job at this and autoparamDriver
should make this easier if possible, but not more diffi-
cult.

5. Related to the goal of providing approachable docu-
mentation, provide a more ergonomic API than bare
asynPortDriver when possible. Internal details of
asyn leak through its APIs, along with concepts that
are hard to grasp or are heavily overloaded. A good
example of both is the concept of “reason”: reasons of
different kinds are passed to asynPortDriver func-
tions as parameters, but can mean different things de-
pending on context. This can be difficult to follow even
for an experienced developer.

DESIGN
The autoparamDriver EPICS module provides

the Autoparam::Driver class, which is derived from
asynPortDriver, and, in turn, needs to be subclassed and
1 Excepting, naturally, the chapter on EPICS device support.
2 This goal had high priority during the development of autoparamDriver

because other in-development drivers depended on it. Its importance will
diminish with time.

extended with functionality needed to talk to a specific type
of device. There are two ways to look at such a driver: the
end-user point of view and the driver developer point of
view.

From the point of view of the end user, who is tasked with
setting up an EPICS input-output controller (IOC) and its
database for their particular situation, it all starts with the
EPICS database (see goal 1 above). The database provides
the information needed to transfer data to or from the device,
and the layers underneath take care of it. This is shown in
Fig. 1 where a “word” at address 0x1234 is requested from
the device. The user needs to know

• which asyn device support layer is needed,

• which “device function” they want (e.g. word),

• and which parameters this function needs (e.g.
0x1234).

That a particular device support needs to be chosen
explicitly may seem superfluous, especially because
autoparamDriver ties it to the device function (as we will
see later). However, this is how EPICS records work, and
for good reason.3

The driver developer, on the other hand, has much more
freedom in how to approach the problem. There are three
issues to tackle:

• opening “channels” or “handles” to the device based
on which records are instantiated in the database,

• handling read and write requests from records,

• and pushing data to I/O Intr records, i.e. records that
are to be updated in response to events originating on
the device.

In the rest of this section, we will take a look at how
autoparamDriver approaches them and what needs to be
provided by the subclass of Autoparam::Driver and its
ancillary classes to make things work. To make things easier
to follow, the APPENDIX has an abbreviated listing of the
Driver class.
3 A record can change its behavior significantly based on which device

support is in use. For example, asyn allows an ai record to be used
both with asynInt32 and asynFloat64 interfaces which handle unit
conversions differently.

13th Int. Workshop Emerging Technol. Sci. Facil. Controls PCaPAC2022, Dolní Brežany, Czech Republic JACoW Publishing

ISBN: 9 7 8 - 3 - 9 5 4 5 0 - 2 3 7 - 0 ISSN: 2 6 7 3 - 5 5 1 2 d o i : 1 0 . 1 8 4 2 9 / J A C o W - P C a P A C 2 0 2 2 - F R O 1 2

Hardware Technologies and Component Integration, System Modeling and Automation

FRO12

99

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Device Variables
When an EPICS records that uses asyn device support is

initialized, it registers a handle for itself by making a call that
ends up executing asynPortDriver::drvUserCreate().
This function is overridden by autoparamDriver and is the
point where handles to device data are instantiated. These
handles are called device variables as that is what they repre-
sent. Each variable has an associated device address. Based
on the string provided in the record’s INP field, which is
passed to drvUserCreate(), a variable is created in three
steps:

1. The first (and possibly only) word of the input string
is taken as a device function. We only proceed if a
read and/or write handler has been registered for this
function (as described later).

2. The rest of the input string is passed as-is to the func-
tion parseDeviceAddress() which is implemented
by the subclassed driver. This function returns a
DeviceAddress object.

3. If this address was encountered before,4 the existing
DeviceVariable object is returned. Otherwise, the
createDeviceVariable() function implemented by
the subclassed driver is called to create a new object.

The DeviceAddress and DeviceVariable are abstract
classes. They are meant to be subclassed so that they contain
data relevant to the device.

Handlers
Autoparam::Driver overrides asynPortDriver’s

read and write functions. These functions receive an
asynUser pointer as a handle to the record that called them,
and this handle contains a “reason” which can be used to
determine which data is requested. Thus, an implementation
of a read or write function typically contains a switch
statement or an if-else ladder to dispatch on the “reason”.
autoparamDriver provides that level of dispatch it-

self by recognizing that generic drivers commonly refer
to a device function, such as the word function in the ex-
ample shown in Fig. 1. autoparamDriver will exam-
ine the provided asynUser handle to find the associated
DeviceVariable, then it will find the handler registered
for the function associated with the DeviceVariable and
call it. The subclassed driver thus needs to implement han-
dlers for each device function it knows, and register these
handlers in its constructor.

Read and write handlers are static functions5 that take a
DeviceVariable reference as an argument. They can cast
it to whichever subclass the driver actually uses, thus getting
access to everything the handler needs to communicate with
the device. As an example, the signature of a read handler
for 16-bit words looks like this:
4 Several records can refer to the same device variable.
5 One of the constraints for autoparamDriver was that it has to conform

to the C++03 standard, which constrains the design significantly, but
allows for wider adoption.

Result<epicsInt32> readWord(DeviceVariable &var);

Note that the value read from the device is returned as
part of the Result. This object also contains the error status
and, if required, can override the alarm status and severity
of the EPICS record that made the call. The type of data that
it passes to asyn is given in its template argument. There is
no mention of the 16-bit data type that is used to talk to the
device: that is an implementation detail of the subclassed
driver.

When the subclassed driver registers a handler that
uses epicsInt32 data type on the asyn side, the
Autoparam::Driver base class knows that the data will
move through the asynInt32 interface and that this han-
dler is a candidate when asynPortDriver::readInt32()
is called. This is an example of a pattern that pervades
autoparamDriver: instead of specifying the interfaces
with an enum or having them as part of function names
as is normally done in asyn, they are implied by the
data types used. Scalars are passed as epicsInt32 or
epicsFloat64, digital IO uses epicsUInt32, arrays are
wrapped in Array<T> and strings are wrapped in Octet
(which is an Array<char>). There is a 1:1 mapping be-
tween data types and asyn interfaces.

Interrupts
I/O Intr records are processed via the mechanism

provided by asynPortDriver, which is built on top of
asyn parameters. Each DeviceVariable is backed by
an asyn parameter, which is dynamically created during
the call to drvUserCreate(); this is where the name of
autoparamDriver comes from.6 This means that process-
ing I/O Intr records is done the same way as with plain
asynPortDriver:

• set one or more scalars using setParam(), then call
asynPortDriver::callParamCallbacks();

• for arrays, use the doCallbacksArray().

For scalars, asyn parameters take care of determining
whether the value of a parameter has been changed and
whether (and which) records needs to be processed.
setParam() and doCallbacksArray() are not

quite the same as asynPortDriver’s set*Param()
and doCallbacks*Array() family of functions. First,
they take a reference to a DeviceVariable as the first
argument. Second, they are templates. This continues
the pattern noted earlier: autoparamDriver uses data
types to determine which asyn interface to use. Thus,
passing an epicsInt32 to setParam() will dispatch
to asynPortDriver::setIntegerParam() and the
programmer does not need to deal with asyn’s naming
idiosyncrasies (goal 5).
6 In truth, the name will stay appropriate even if this mechanism is replaced

in the future, the basic design will remain the same. And it may well be
replaced: reusing asyn parameters is in line with goal 3, but constrains
autoparamDriver so that each device function can only be bound to a
single interface. This was found to not be very limiting, but it may still
be desireable to lift this restriction at some point.

13th Int. Workshop Emerging Technol. Sci. Facil. Controls PCaPAC2022, Dolní Brežany, Czech Republic JACoW Publishing

ISBN: 9 7 8 - 3 - 9 5 4 5 0 - 2 3 7 - 0 ISSN: 2 6 7 3 - 5 5 1 2 d o i : 1 0 . 1 8 4 2 9 / J A C o W - P C a P A C 2 0 2 2 - F R O 1 2

FRO12

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

100 Hardware Technologies and Component Integration, System Modeling and Automation



In accordance with goal 4, autoparamDriver allows one
to process I/O Intr records

• during or after running write or read handlers,
• in response to hardware interrupts (e.g. from a callback

function),
• or at any other time, in particular from a background

scanning thread.

For each of these cases, there is a feature that supports it.
The code that calls read and write handlers can optionally

also process I/O Intr records that are bound to the same
device variable. A handler decides whether this is desired
by setting a field in the Result structure it returns.

For a background scanning thread, it may be convenient
to know which device variables have I/O Intr records
that are interested in updates in a given moment. The
getInterruptVariables() function returns a list of such
variables.

For some devices, hardware interrupts need to be explic-
itly enabled, or a subscription needs to be set up for each
device variable of interest. When a driver is registering han-
dlers, it may also register an interrupt registrar function.
That function is called (a) when the first record’s SCAN
field is switched to I/O Intr; (b) when the last record is
switched away from I/O Intr. In other words, no matter
how many records are bound to a particular device variable
and have SCAN set to I/O Intr, only one call to the regis-
trar will be done. The registrar function can then set up (or
tear down) the subscription to hardware interrupts.

CONCLUSION
Let us summarize how the design of autoparamDriver

supports its goals.
The primary objective is allowing the driver author to

create a generic driver; such a driver facilitates binding de-
vice variables to records without modifying and recompil-
ing the driver. To this end, autoparamDriver provides a
mechanism to instantiate DeviceVariable objects that the
subclassed driver can use as it sees fit. Parsing of device ad-
dresses that are entered into the EPICS records is left to the
subclassed driver, allowing lots of freedom. Only the first
word is interpreted as a device function, allowing the sub-
classed driver to be designed in terms of function handlers.
This reduces the amount of necessary boilerplate.
autoparamDriver relies on the asynPortDriver’s pa-

rameters to help with processing interrupts, which constrains
the design a bit, but builds on top of a well-tested founda-
tion. asynPortDriver’s facilities also allow interrupts to
be processed in a number of different scenarios.

While we recognize that API design is, to an extent, a mat-
ter of taste, we believe that autoparamDriver provides a
more ergonomic facade over asynPortDriver’s functions
by using templates instead of separate functions. The use of
handlers instead of overloading read and write functions also
furthers this goal. More importantly, autoparamDriver

eschews various “reasons” that asyn uses, using instead
DeviceVariable objects as handles to device data.

As for documentation [7], we aim to have not only a com-
plete reference document, but also a gentle introduction to
the concepts involved. Importantly, we do not provide an
example driver. Instead, we provide a tutorial, each step
accompanied with a short discussion of what needs to be
considered. We hope that this will reduce cargo-culting and
increase the quality of drivers based on autoparamDriver.

APPENDIX
Abbreviated7 public interface of Autoparam::Driver.

namespace Autoparam {
class Driver : public asynPortDriver {
public:

explicit Driver(const char *portName, DriverOpts const &params);
virtual ~Driver();

protected:
virtual DeviceAddress *parseDeviceAddress(std::string const &function,

std::string const &arguments) = 0;

virtual DeviceVariable *createDeviceVariable(DeviceVariable *baseVar) = 0;

template <typename T>
void registerHandlers(std::string const &function,

typename Handlers<T>::ReadHandler reader,
typename Handlers<T>::WriteHandler writer,
InterruptRegistrar intrRegistrar);

template <typename T>
asynStatus doCallbacksArray(DeviceVariable const &var, Array<T> &value,

asynStatus status = asynSuccess,
int alarmStatus = epicsAlarmNone,
int alarmSeverity = epicsSevNone);

template <typename T>
asynStatus setParam(DeviceVariable const &var, T value,

asynStatus status = asynSuccess,
int alarmStatus = epicsAlarmNone,
int alarmSeverity = epicsSevNone);

std::vector<DeviceVariable *> getAllVariables();

std::vector<DeviceVariable *> getInterruptVariables();
};
}

REFERENCES
[1] EPICS database concepts, retrieved August 2022. https:
//docs.epics-controls.org/en/latest/guides/
EPICS_Process_Database_Concepts.html

[2] EPICS hardware support database, retrieved August
2022. https://epics-controls.org/resources-and-
support/modules/hardware-support/

[3] EPICS application developer’s guide, retrieved August 2022.
https://docs.epics-controls.org/en/latest/
appdevguide/AppDevGuide.html

[4] asynDriver, retrieved August 2022. https://epics-
modules.github.io/master/asyn/

[5] AreaDetector, retrieved August 2022. https://
areadetector.github.io/

[6] The modbus module, retrieved August 2022. https://epics-
modbus.readthedocs.io/

[7] The autoparamDriver documentation, retrieved September
2022. https://epics.cosylab.com/documentation/
autoparamDriver/

7 Functions from the part of the public interface of asynPortDriver that
are used by asyn must be public, but are not intended to be overriden
further and are ommited here. See main text for the description and
example signature of a handler, and short descriptions of some of the
ancillary classes.

13th Int. Workshop Emerging Technol. Sci. Facil. Controls PCaPAC2022, Dolní Brežany, Czech Republic JACoW Publishing

ISBN: 9 7 8 - 3 - 9 5 4 5 0 - 2 3 7 - 0 ISSN: 2 6 7 3 - 5 5 1 2 d o i : 1 0 . 1 8 4 2 9 / J A C o W - P C a P A C 2 0 2 2 - F R O 1 2

Hardware Technologies and Component Integration, System Modeling and Automation

FRO12

101

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I


