
Taskomat & Taskolib: A VERSATILE, PROGRAMMABLE SEQUENCER
FOR PROCESS AUTOMATION

L. Fröhlich∗, O. Hensler, U. Jastrow, M. Walla, J. Wilgen
Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany

Abstract
This contribution introduces the Taskolib library, a pow-

erful framework for automating processes. Users can easily
assemble sequences out of process steps, execute these se-
quences, and follow their progress. Individual steps are fully
programmable in the lightweight Lua language. If desired,
sequences can be enhanced with flow control via well-known
constructs such as IF, WHILE, or TRY. The library is written
in platform-independent C++ 17 and carries no dependency
on any specific control system or communication framework.
Instead, such dependencies are injected by client code; as
an example, the integration with a DOOCS server and a
graphical user interface is demonstrated.

INTRODUCTION
Like other scientific and industrial facilities, particle ac-

celerators consist of many subsystems that need to be co-
ordinated. The operation of any such complex system is
inevitably governed by processes of various kinds. These
processes can be implicit (“operators typically do it like
this”), explicit (checklists and step-by-step instructions), or
automated (implemented in hard- or software). Automated
processes have several advantages over their manual coun-
terparts:

• Faster execution
• Better reproducibility
• Reduced work load for operators
• Improved documentation of what happened when
The particle accelerator community has traditionally been

in a good position to profit from automation in software
because of its early adoption of distributed control systems.
Tools to execute process steps automatically, so-called se-
quencers, have a long history [1–7]. Even today, this field
keeps spawning new developments due to changing require-
ments and user expectations [8–10].

At DESY, the main tool for the automation of processes for
more than a decade has been the aptly named Sequencer/File
Operator [11]. It can execute linear sequences of steps with
limited support for branches and jumps between the steps.
Each step can write values to the control system or read them
until certain conditions are fulfilled. Apart from this, the
tool also provides save&restore functionalities for control
system properties.

The Sequencer consists of a Java client with a graphi-
cal user interface (Fig. 1) and a Java server component that
mainly provides central data storage and version control.
Although the tool has proven its usefulness across practi-

∗ lars.froehlich@desy.de

Figure 1: A procedure in the legacy DESY sequencer.

cally all of DESY’s accelerator facilities, several flaws have
become apparent over the years:

• The sequences are written as XML files with a poorly
documented set of tags and attributes. Users typically
have to interact with a Subversion repository to edit
these files. This presents a high entry bar for creating
or maintaining sequences, so that this task is left to
very few experts and a lot of potential for automation
is wasted.

• The kinds of sequences that can be expressed are lim-
ited: Control flow can only be directed through con-
ditional goto statements, and there is no support for
variables or arithmetic or string operations.

• The client-server communication is based on the TINE
protocol [12] which has reached end-of-life and is
slowly phased out.

• Sequences are executed on the client and require the
graphical user interface. This prohibits their use from
other components in the control system.

In combination, these shortcomings would be hard to over-
come with incremental improvements to the existing code.
Therefore, we have decided to develop a new sequencer from
scratch.

Taskomat: DESIGN
The new Taskomat sequencer models processes as se-

quences of individual steps like its predecessor. In contrast
to it, it is designed around the following goals:

• Integration into the control system: Sequences can be
started, controlled, and manipulated from the control
system.

13th Int. Workshop Emerging Technol. Sci. Facil. Controls PCaPAC2022, Dolní Brežany, Czech Republic JACoW Publishing

ISBN: 9 7 8 - 3 - 9 5 4 5 0 - 2 3 7 - 0 ISSN: 2 6 7 3 - 5 5 1 2 d o i : 1 0 . 1 8 4 2 9 / J A C o W - P C a P A C 2 0 2 2 - F R O 1 1

FRO11

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

94 Hardware Technologies and Component Integration, System Modeling and Automation



Figure 2: A process is modeled as a sequence of steps.

• Control flow: Sequences can contain well-known con-
trol flow constructs such as if or while, but no goto.

• Programmability: There is no inherent limit to the
complexity of the procedures that can be expressed.
Where necessary, users are able to program the desired
functionality.

• Ease of use: The barriers for users to create, edit, and
test sequences are as low as possible.

• Separation of control system dependent and indepen-
dent code: As much of the code as possible has no
dependency on the control system.

Figure 2 illustrates how a process is modeled as a sequence
of steps: Typical steps just perform an action, but control
flow steps like if or while can be used to express conditional
execution or loops. Table 1 summarizes the available step
types. In this high-level view, only the overarching control
flow and user-defined descriptions of the individual steps
are visible, providing a clear and unobstructed outline of the
sequence.

What each individual step actually does is defined by a
script written in the lightweight Lua extension language [13,
14]. Unlike most general-purpose programming languages,
Lua has a clear and simple syntax that is easy to handle even
for occasional users:

addr = "SOME/CONTROL/SYSTEM/ADDRESS"
for i = 1, 10 do

print("Writing", i, "to", addr)
dset(addr, i)
sleep(0.5)

end

Here, Taskomat provides implementations of the functions
dset (set a property in the control system) and sleep. Condi-
tions for if, elseif, or while steps are also written in Lua. In
these cases, the return value of the script determines if the
corresponding branch is taken:

current = dget("ADDR/OF/A/CURRENT_MONITOR")
return current < 0.05

Table 1: Supported Step Types

Type Description

action Execute script
if Conditional execution of block
elseif Conditional execution of block
else Conditional execution of block
while Conditional loop execution
try Execute block while intercepting errors
catch Handle errors intercepted by try
end Block-ending step

Individual steps are isolated from each other, but variables
can be passed between them through explicit ex- or import
from/to a context that is shared by the entire sequence.

IMPLEMENTATION
The Taskomat is implemented in standard C++ 17. The

language was chosen for its platform independence and be-
cause bindings for all relevant control systems and for the
Lua interpreter are available.

Taskolib Library
All of the control system independent code is gathered in

a library that provides
• classes for modelling sequences and steps,
• a set of custom commands for Lua (e.g. sleep or print

with output redirection),
• support for executing sequences asynchronously and

aborting them at any time,
• support for receiving status updates and output from

running sequences,
• support for serialization and deserialization of se-

quences.
The library includes a copy of Lua 5.4.3 and of the asso-

ciated Sol3 C++ wrapper [15,16] in version 3.2.3. Its only
external dependency is the GUL14 [17, 18] basis library.

Taskomat DOOCS Server
So far, we have implemented one server for the DOOCS

control system [19–21] that makes use of the library. It
provides a thin layer of DOOCS properties to allow the
inspection, modification, and execution of sequences. It also
injects the DOOCS-specific commands dget and dset into
the Lua interpreter to facilitate control system access from
within the scripts. Most of the basic data types can already
be read and written, which should make the server useful
for DOOCS environments such as the European XFEL or
FLASH facilities.

Graphical User Interface
We have created a simple graphical user interface with

the jddd [22,23] user interface builder. Figures 3 and 4 show
screenshots of the main panel and of the step editor. This
user interface blends in well with the jddd-based operation

13th Int. Workshop Emerging Technol. Sci. Facil. Controls PCaPAC2022, Dolní Brežany, Czech Republic JACoW Publishing

ISBN: 9 7 8 - 3 - 9 5 4 5 0 - 2 3 7 - 0 ISSN: 2 6 7 3 - 5 5 1 2 d o i : 1 0 . 1 8 4 2 9 / J A C o W - P C a P A C 2 0 2 2 - F R O 1 1

Hardware Technologies and Component Integration, System Modeling and Automation

FRO11

95

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Figure 3: Main user interface for the Taskomat DOOCS
server.

panels of our accelerator facilities and should make it easy
for operators and subsystem experts to develop their own
procedures. It is, however, tightly coupled to the DOOCS
server, and can therefore not be reused for developments
with other control systems.

OPEN SOURCE
The Taskolib library is open source. The source code is

published on GitHub [24] under the LGPL-2.1 [25] license.
We welcome collaboration and external contributions. The
source code of the Taskomat DOOCS server can also be
made available on request.

STATUS AND OUTLOOK
The Taskolib library, the Taskomat DOOCS server, and

the jddd-based user interface have reached “minimum vi-
able product” state. Their feature set should be sufficient to
perform useful tasks in our accelerator environments. We
are now going to focus on the writing of sequences together
with domain experts to gather feedback and experience with
the software. The further development will depend on the
outcome of this field test. We expect that features like auto-
matic version control or improved nesting of sequences will
be the next logical steps.

As we have seen with our DOOCS server, the effort of
writing a Taskomat application for a specific control sys-
tem is relatively low because the library contains most of
the core functionality. This is not necessarily the case for
the graphical user interface, though: In our case, the jddd
panels were easy to create, but they cannot be reused for
other control systems. The creation of a full-fledged GUI
application could help with this. It would also make it easier
to add special features like syntax highlighting for Lua.

Figure 4: Step editor for the Taskomat DOOCS server.

ACKNOWLEDGEMENTS
The authors would like to thank Pedro Castro (DESY) and

Giulio Gaio (Elettra–Sincrotrone Trieste) for many helpful
discussions and ideas on sequencers and on the automation
of accelerator operations.

REFERENCES
[1] P. Clout, M. Geib, and R. Westervelt, “Automation tools for

accelerator control – A network based sequencer”, in Proc.
LINAC 1990, Albuquerque, USA, Sep. 1990, pp. 764–766.

[2] L. R. Dalesio, A. J. Kozubal, and M. R. Kraimer, “EPICS
architecture”, in Proc. ICALEPCS 1991, Tsukuba, Japan,
Nov. 1991.

[3] A. J. Kozubal, D. M. Kerstiens, and R. M. Wright, “Expe-
rience with the State Notation Language and run-time se-
quencer”, Nucl. Instr. and Meth. A, vol. 352, no. 1, pp.
411–414, Dec. 1994.
doi:10.1016/0168-9002(94)91556-3

[4] J. A. Perlas, D. Beltrán, and J. Rosich, “Design and implemen-
tation of a finite state machine queuing tool for EPICS”, in
Proc. ICALEPCS 1999, Trieste, Italy, Oct. 1999, pp. 564–566.

[5] J. Patrick, “The Fermilab accelerator control system”, in Proc.
ICAP 2006, Chamonix, France, Oct. 2006, pp. 246–249.

[6] V. Baggiolini, R. Alemany‐Fernandez, R. Gorbonosov, et al.,
“A sequencer for the LHC era”, in Proc. ICALEPCS 2009,
Kobe, Japan, Oct. 2009, pp. 670–672.

[7] R. Alemany-Fernandez, V. Baggiolini, R. Gorbonosov, et al.,
“The LHC sequencer”, in Proc. ICALEPCS 2011, Grenoble,
France, Oct. 2011, pp. 300–303.

[8] G. Gaio, P. Cinquegrana, S. Krecic, et al., “A framework
for high level machine automation based on behavior trees”,
in Proc. ICALEPCS 2021, Shanghai, China, Oct. 2021, pp.
534–539.
doi:10.18429/JACoW-ICALEPCS2021-WEAL02

[9] W. Van Herck, B. Bauvir, and G. Ferro, “Automated operation
of ITER”, in Proc. ICALEPCS 2021, Shanghai, China, Oct.

13th Int. Workshop Emerging Technol. Sci. Facil. Controls PCaPAC2022, Dolní Brežany, Czech Republic JACoW Publishing

ISBN: 9 7 8 - 3 - 9 5 4 5 0 - 2 3 7 - 0 ISSN: 2 6 7 3 - 5 5 1 2 d o i : 1 0 . 1 8 4 2 9 / J A C o W - P C a P A C 2 0 2 2 - F R O 1 1

FRO11

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

96 Hardware Technologies and Component Integration, System Modeling and Automation



2021, pp. 628-630.
doi:10.18429/JACoW-ICALEPCS2021-WEPV006

[10] D. Marcato, G. Arena, M. Bellato, et al., “Pysmlib: A Python
finite state machine library for EPICS”, in Proc. ICALEPCS
2021, Shanghai, China, Oct. 2021, pp. 330–336.
doi:10.18429/JACoW-ICALEPCS2021-TUBL05

[11] R. Bacher, “Commissioning of the new pre-accelerator con-
trol system at DESY”, in Proc. PCaPAC 2008, Ljubljana,
Slovenia, Oct. 2008, pp. 171-173.

[12] P. K. Bartkiewicz and P. Duval, “TINE as an accelerator
control system at DESY”, Meas. Sci. Technol., vol. 18, pp.
2379–2386, July 2007.
doi:10.1088/0957-0233/18/8/012

[13] R. Ierusalimschy, L. H. de Figueiredo, and W. Celes, “Lua
– an extensible extension language”, Software: Practice &
Experience vol. 26, no. 6, pp. 635–652, June 1996.
doi:10.1002/(SICI)1097-024X(199606)26:6<635::
AID-SPE26>3.0.CO;2-P

[14] Lua website, https://www.lua.org

[15] Sol3 documentation website, https://sol2.
readthedocs.io/en/latest/

[16] Sol3 source code repository, https://github.com/
ThePhD/sol2

[17] GUL14 (General Utility Library for C++14) documentation
website, https://gul14.info

[18] GUL14 (General Utility Library for C++14) source code
repository, https://github.com/gul-cpp/gul14/

[19] O. Hensler and K. Rehlich, “DOOCS: A distributed object
oriented control system”, in Proc. XV Workshop on Charged
Particle Accelerators, Protvino, Russia, 1996.

[20] L. Fröhlich, A. Aghababyan, S. Grunewald, et al., “The evolu-
tion of the DOOCS C++ code base”, Proc. ICALEPCS 2021,
Shanghai, China, Oct. 2021, pp. 188–192.
doi:10.18429/JACoW-ICALEPCS2021-MOPV027

[21] DOOCS website, https://doocs.desy.de

[22] E. Sombrowski, A. Petrosyan, K. Rehlich, et al., “jddd: A tool
for operators and experts to design control system panels”, in
Proc. ICALEPCS 2013, San Francisco, USA, Oct. 2013, pp.
544–546.

[23] jddd (Java DOOCS Data Display) documentation website,
https://jddd.desy.de

[24] Taskolib source code repository, https://github.com/
taskolib/taskolib

[25] GNU Lesser General Public License version 2.1,
https://www.gnu.org/licenses/old-licenses/
lgpl-2.1.html

13th Int. Workshop Emerging Technol. Sci. Facil. Controls PCaPAC2022, Dolní Brežany, Czech Republic JACoW Publishing

ISBN: 9 7 8 - 3 - 9 5 4 5 0 - 2 3 7 - 0 ISSN: 2 6 7 3 - 5 5 1 2 d o i : 1 0 . 1 8 4 2 9 / J A C o W - P C a P A C 2 0 2 2 - F R O 1 1

Hardware Technologies and Component Integration, System Modeling and Automation

FRO11

97

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC

B
Y
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I


