
BLISS – EXPERIMENTS CONTROL FOR ESRF EBS BEAMLINES
M. Guijarro∗, A. Beteva, T. Coutinho, M. C. Dominguez, C. Guilloud, A. Homs,

J. Meyer, V. Michel, E. Papillon, M. Perez, S. Petitdemange
ESRF The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble France

Abstract
BLISS is the new ESRF control system for running ex-

periments, with full deployment aimed for the end of the
EBS upgrade program in 2020. BLISS provides a global ap-
proach to run synchrotron experiments, thanks to hardware
integration, Python sequences and an advanced scanning en-
gine. As a Python package, BLISS can be easily embedded
into any Python application and data management features
enable online data analysis. In addition, BLISS ships with
tools to enhance scientists user experience and can easily be
integrated into TANGO based environments, with generic
TANGO servers on top of BLISS controllers. BLISS con-
figuration facility can be used as an alternative TANGO
database. Delineating all aspects of the BLISS project from
beamline device configuration up to the integrated user in-
terface, this paper will present the technical choices that
drove BLISS design and will describe the BLISS software
architecture and technology stack in depth.

BLISS PROJECT SCOPE
The BLISS project brings a holistic approach to syn-

chrotron beamline control. The scope of the BLISS project
goes from hardware control up to the end-user interface.
BLISS does not include data analysis, which is devoted to
another software package at ESRF called silx [1].

CONFIGURATION
The BLISS configuration entity, a.k.a Beacon, aims to

provide a complete and centralized description of the entire
beamline. BLISS distinguishes between 2 kinds of configu-
ration information: either configuration is static, as a stepper
motor axis steps per unit, ie. the configuration information
will not change over time once the object is configured ; or
the configuration is subject to change, like a motor velocity
for example. In this case, this is called a setting and settings
are all backed up within the redis database [2].

Static Configuration
The static configuration consists of a centralized directory

structure of text based files, which provides a simple, yet
flexible mechanism to describe BLISS software initialization.
The YAML [3] format has been chosen because of its human
readability (cf. Figure 1).

BLISS is an object oriented library and its configuration
follows the same model. Objects are identified in the system
by a unique name. BLISS reserves the YAML key name as
the entry point for an object configuration.

∗ guijarro@esrf.fr

ID00

EH

OH

temperature

motion.yml

sessions

tomo.py
tomo.yml

...

Figure 1: YAML tree example.

Each particular BLISS class may choose to profit from
the BLISS configuration system. The BLISS configuration
is powerful enough to describe not only control objects like
motors, counter cards or detectors but also user interface
objects like sessions or procedures.

The following YAML lines exemplify motor and session
configurations:

motion.yml
class: IcePAP
host: iceid311
plugin: emotion
axes:
- name: rotY

address: 3
steps_per_unit: 100
acceleration: 16.0
velocity: 2.0

tomo.yml
class: Session
name: tomo
config-objects: [rotY, pilatus, I, I0]
setup-file: ./tomo.py
measurement-groups:
- name: sensors

counters: [I, I0]

Settings
Beacon relies on Redis to store settings, ie. configura-

tion values that change over time, and that needs to be ap-
plied to hardware equipments at initialization time. This
allows to be persistent across executions. Taking again
the motor example, if a motor velocity is set to a certain
amount from a BLISS session, when it is restarted the
last known velocity is applied to the axis. Settings values
use Redis structures: settings can be hashes (mapped to a
Python dictionary), lists, and scalar values. BLISS offers a

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-WEP02

WEP02
26

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System and Component Integration

bliss.config.settings helper submodule to deal with
Beacon settings directly from the host Python program.

Beacon Server
A client can access the remote configuration through a

service provided by the beacon-server which, on request,
provides a complete or partial YAML configuration. The
BLISS library provides a simple API for clients to retrieve
the configuration from the server as a singleton Config ob-
ject:

>>> from bliss.config.static import get_config
>>> config = get_config()
>>> rotY = config.get(’rotY’)
>>> rotY.position()
23.45

The beacon-server is also responsible of managing a Re-
dis server instance and optionally a configuration web ap-
plication (cf. Figure 2).

Figure 2: Beacon configuration tool.

TANGO Database
Additionally, Beacon can also provide an alternative im-

plementation of the TANGO Database [4] service based on
the same YAML configuration structure.

HARDWARE CONTROL
To the hardware control point of view, challenging points

are to support an increasing number of devices to fit the
experimental needs of scientists and to be able to deal with
increasing complexity of devices (synchronization or com-
munication protocols for example)

Generic Controllers

To achieve these goals, BLISS provides generic con-
trollers which implement the complex, logical part of the
control for each main class of devices encountered and leave
to the developers the task to implement only the specific part
of the control.

This approach is very efficient for instruments with a great
variety of models. The price to pay is an increase of the com-
plexity of the generic controllers. But this strategy is not
exclusive: some controllers are, at least for now, not generic;
either because we have no common behavior between differ-
ent models or because it is much simpler to have a dedicated
control. We can mention: Keithley electrometers or some
ESRF cards like OPIOM or MUSST.

The first generic controllers we provide are dealing with:
• Motors Controllers
• Multichannel Analyzers (for fluorescence detectors)
• Temperature Controllers
• 2D detectors (via Lima)

Motors

Motor controllers are based on five fundamental classes
(Controller, Axis, Group, Encoder and Shutter). The
generic motor controller objects, and derivative devices,
provide management of:

• typical basic parameters: velocity, acceleration, limits,
steps per unit

• state, motion hooks, encoders reading, backlash, limits,
offsets

• typical actions: homing, jog, synchronized movements
of groups of motors

The minimal coding part to support a new controller
consist, for the developer, in providing implementation
of elementary functions like: read_position(),
read_veolcity(), set_velocity(), state(),
start_one() and stop().

A Calculation Controller is also proposed to build vir-
tual axes on top of real ones.

The list of motor controllers already implemented in
BLISS, in use at ESRF, includes (but is not limited to) con-
trollers like Aerotech, FlexDC, Galil, IcePap, Newfocus, PI
piezo or Piezomotor PMD206.

Multichannel Analyzer Controllers

The principle is very similar for MCA electronics. An
interesting detail of the implementation is the usage or ze-
roRPC [5], to deport control from a windows computer to the
workstation where BLISS is running. This behavior allows
to cohere with the direct hardware control principle.

First targeted MCA are XIA devices: Xmap, Mercury
and FalconX. They will be followed by Maya2000 from
OceanOptics and Hamamatsu.

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-WEP02

Control System and Component Integration
WEP02

27

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Simulators
For each type of generic controller, we have built “simula-

tion devices” to test our own code and to provide test devices
to help users with the creation of their control sequences.

A simulator like the mockup motor controller is used
to test the logical part of the motor controller within the
frame of a collection of unit tests executed in a continuous-
integration process.

SCANNING
BLISS implements a general scanning engine to run all

kinds of scans, that emancipates from the dichotomy of
step-by-step or continuous scans. Indeed, BLISS introduces
the concepts of acquisition chain, acquisition master and
acquisition device to be able to perform any kind of scan.

Acquisition Chain
The representation of the acquisition chain is a tree. The

hierarchical nature of the acquisition chain allows to formal-
ize the dependencies between nodes. There are 2 kinds of
nodes:

• master nodes, that trigger data acquisition
• device nodes (leaves), that acquire data
Acquisition chain objects expose 3 methods correspond-

ing to the 3 phases of a scan:
• prepare()
• start()
• stop()
During the preparation phase, the acquisition chain tree

is traversed in reversed level order (reversed Breadth-first
search [6]) in order to prepare the device nodes first, then
masters and so on until the tree root ; on each element,
.prepare() is called. Preparation is decoupled from start
in order to make sure minimum latency will happen when
starting the scan. Indeed, during preparation each equip-
ment is programmed or configured for the scan. By default,
preparation of all equipments is done in parallel.

At start, the same tree traversal procedure is applied
as within the preparation phase ; on each chain element,
.start() is called ; device nodes will begin to wait for a
trigger whereas master nodes will start to produce trigger
events. It is important to note that devices are always started
before masters, and that trigger events can be hardware or
software. A scan can be seen as an iterative sequence ; after
.start() method is executed, the acquisition chain enters
the first iteration.

It continues until the first master signals acquisition is
finished, or in case of error, or if the scan is interrupted.
Then, .stop() methods are called on each tree element.

Monitoring scan example The following chain de-
scribes a scan with one timer master, triggering 3 diode
counters (cf. Figure 3).

Basic scan example This chain describes a scan with
one motor master, triggering a timer master, that triggers in

Timer

diode1

diode2

diode3

Figure 3: Monitoring scan chain.

turn 3 diode counters (cf. Figure 4). This is typically the kind
of scan Spec does with the ascan or dscan macros, except
that in the case of BLISS the step-by-step or continuous
nature of the scan does not depend on the acquisition chain,
but on the type of master and device nodes.

Timer

diode1

diode2

diode3

Motor

Figure 4: Basic scan example.

Associating basic scan and monitoring This chain de-
scribes a scan with 2 top masters: one motor and one timer
(cf. Figure 5). The branch with the motor is like the basic
scan above, except that a 2D detector is taking images at
predefined motor positions, and for each image it acquires
X and Y beam position. On the second branch, there is a
simple temperature monitoring. The two top masters run in
parallel.

Root

Motor

Timer

temperature2

Lima

beamX

beamY

Figure 5: Associating basic scan and monitoring.

DATA MANAGEMENT
BLISS has built-in data management facilities as a first-

class citizen. Each node object in the chain has a name,
which clearly identifies data sources. Associated with the
tree view of the acquisition chain, BLISS creates a data
model from the bottom-up that closely follows experiments.

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-WEP02

WEP02
28

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System and Component Integration

Acquisition Channels
Acquisition chain objects, being masters or devices, define

zero or more AcquisitionChannel objects which have:
• a name
• a type
• a shape
Acquisition channels describe the kind of data produced

by the underlying BLISS control objects.

Data Writing and Publishing
During scans, data is placed in the appropriate acquisition

channels; then, the scanning engine temporarly publishes
the channels to the Redis database, either as plain values for
scalars or as references to data files for bigger data. Con-
currently, channel data is written by the active data writer
object. By default, BLISS saves data in HDF5 format.

Any external process can monitor Redis to get notified
of on-going acquisitions.and to explore acquired data. This
facilitates online data analysis. Scan data is kept in redis for
a configurable amount of time (set to one day by default).

BLISS provides a Python helper module to iterate over
produced data.

BLISS USER INTERFACES
On top of the BLISS library, two user interfaces have been

developed in order to provide an entry point for users on
beamlines to get access to BLISS functionalities.

Bliss Command Line Interface (CLI)
The bliss command line interface is based on ptpython

[7]. It provides a Python interpreter enhanced with BLISS-
specific features. Most notably, the interpreter input loop is
replaced to include gevent [8] events processing.

bliss can load BLISS sessions, via a -s command line
switch. The command line interface automatically loads
session objects, and executes an optional setup script. All
globals are exported to the bliss.setup_globals names-
pace, in order to allow users to import session objects in
their own scripts.

BLISS Shell Web Application
BLISS ships with an ‘experimental’ version of a web-

based command line interface similar to bliss (see above),
offering more graphical display possibilities thanks to the
web platform (cf. Figure 6).

CONCLUSION
This document presented the context for the launch of the

BLISS project, and went through a technical review of all
aspects of the development currently conducted at ESRF
to renew the beamline experiments control system in the
perspective of the EBS [9].

At the moment, BLISS is in an active development phase.
Middle term goals include the development of new hardware

Figure 6: BLISS web shell.

controllers, the port of Spec-based experiment protocols
to BLISS with the collaboration of ESRF scientists, and
the improvement of BLISS user interfaces to provide data
visualization capabilities using the ESRF silx toolkit.

BLISS has already been deployed on Macromolecular
Crystallography beamlines, and more ESRF beamlines will
benefit from BLISS before the end of the year: Materials
Chemistry and Engineering (ID15A), High-Energy Mate-
rials Processing (ID31), Materials Science (ID11). BLISS
takes up the challenge of deploying a complete new sys-
tem while the former one is still in production and while
beamlines stay in user operation. The BLISS project main
objective is to have all ESRF beamlines equiped with BLISS
in 2020.

BLISS opens new perspectives in term of beamline exper-
iments control, to bring advanced scanning techniques and
enhanced data management to all ESRF beamlines.

REFERENCES
[1] silx, http://silx.org

[2] redis, http://redis.io

[3] YAML, http://yaml.org

[4] TANGO, http://tango-controls.org

[5] ZeroRPC, http://zerorpc.io

[6] Edward F. Moore,“The shortest path through a maze”, in
Proceedings of the International Symposium on the Theory of
Switching. Harvard University Press. pp. 285–292. As cited
by Cormen, Leiserson, Rivest, and Stein, (1959).

[7] ptpython,
https://github.com/jonathanslenders/ptpython

[8] gevent, http://gevent.org

[9] J. M. Chaize et al., “The ESRF Extremely Brilliant
Source - A 4th Generation light source”, in Proc.
ICALEPCS’17, Barcelona, Spain, Oct. 2017. doi:10.
18429/JACoW-ICALEPCS2017-FRAPL07

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-WEP02

Control System and Component Integration
WEP02

29

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

