
EVOLUTION AND CONVERGENCE OF ALARM SYSTEMS IN TANGO

S.Rubio-Manrique, G.Cuni, F.Fernandez, R.Monge
ALBA Synchrotron, Cerdanyola del Vallès, Barcelona, Spain
G.Scalamera, Elettra-Sincrotrone, Basovizza, Trieste, Italy

Abstract
The technology upgrade that represents Tango 9 has

triggered the evolution of two of the most used Tango
tools, the PANIC Alarm System and the HDB++ Archiv-
ing. This paper presents the status of the collaboration
between Alba and Elettra Synchrotron sources for the
convergence of its both alarms systems under the
IEC62682 [1] standard, and the usage of HDB++ tools for
logging and diagnostic of alarms. Relevant use cases from
the user point of view has been added to the paper as a
validation of the benefits of this control system evolution.

INTRODUCTION

Alarms in Control Systems
Alarm Systems have been a common part of control

system toolkits for decades. In the Synchrotron communi-
ty some of the most common tools are PANIC [2] and
AlarmHandler [3] for Tango Control System [4], as well
as BEAST Alarm System for EPICS.

PANIC and AlarmHandler systems have coexisted
within the Tango community for years, but at some point
new members of the community asked whether to choose
one or the other for their specific domain. This question
triggered an effort to compare both systems, extract the
best features of them and explore how they could com-
plement each other.

This effort required from us to redefine what an Alarm
System was, and what it was expected to do.

What’s an Alarm System?
SKA and Elettra institutions proposed to the Tango

community to adopt a common terminology and behav-
iour based on an international norm, the IEC 62682:2014
"Management of Alarm Systems for the Process Indus-
tries"[5-6]. The norm states that:

 The primary function of an Alarm System will be to

notify abnormal process conditions or equipment
malfunctions, and support the operator response.

 The Alarm System is NOT part of the protection nor
safety systems, which must have separate tools fol-
lowing its own regulation.

 The Alarm System is part of Operator Response, thus
it's part of the HMI (including the non-graphical part
of it).

These three statements clarified what our Alarm Sys-

tems were expected to do; providing a common ground to
start the collaboration on merging both projects.

Alarms within the Tango Control System
It is needed to introduce several concepts on how

alarms are developed within a Tango Control System. The
following terms describe the object hierarchy:

 Tango Host or Database: the central database where
all devices are registered and configuration stored.

 Device Server: Each independent software process
distributed across the system, managing one or sever-
al Tango devices.

 Device: a Tango Device is an entity that can be typi-
cally identified to a hardware piece or software pro-
cess (e.g. a vacuum pump, a PLC, a motor, a voice
synthesizer). Each device exports to the control sys-
tem its Attributes (process variables), Commands (ac-
tions), Properties (for configuration) and States.

 Attributes: Each of the process variables exported by
a Tango Device. They support both synchronous or
asynchronous reading and writing. At each attribute
reading it exports its value, timestamp and quality.

 Attribute Quality: The attribute quality accompanies
each value to express the process conditions. Quality
can be VALID, INVALID, WARNING or ALARM
and it can be set on runtime by a Tango user specify-
ing which ranges of operation/warning/alarm will
trigger a quality change.

Quality-based vs Formula-based Alarms
The most primitive scope of Alarm Systems in Tango

just included the logging of those attributes qualities in
ALARM. But this approach didn’t apply when it was
required the interaction between multiple devices.

The Tango Alarm System (AlarmHandler device server
and its alarm database) was developed [3] to enable logi-
cal and arithmetical operations on attribute values, thus
extending the alarm triggering from the simple matching
of an attribute value within valid ranges.

PANIC [7] was developed by ALBA Synchrotron in
2007 [8] as a Python [9] alternative to the Tango Alarm
System. It was based on similar principles but applying a
distributed architecture (see Fig. 1) and trying to add
annunciator features and more flexibility [10] in alarms
declaration, allowing to execute python code for both the
formula and the resulting action [11]. This enabled the
usage of wildcards for attribute selection, and reusing the
data from the alarm evaluation to generate rich-text
emails or SMS messaging.

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-WEP25

WEP25
92

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

GUI Technologies and Frameworks, User Interfaces and Tools for Operations

Figure 1: PANIC Architecture, showing alarm device servers, configuration and logging databases, and annunciators.

ALARM SYSTEMS CONVERGENCE
Existing Alarm Systems in Tango have been already

described in previous papers [2-3], as well as the changes
required [12] to adapt them to the IEC62682. This paper
focus instead in the changes that allowed their conver-
gence into a single toolkit.

Unifying the AlarmHander and PANIC device servers
forced us to unify criteria on:
 Alarm Formula database
 Alarm attributes
 Classification of alarms
 Annunciators specification and triggering
 Priorities
 Exporting attributes to HMI
 Alarm Summaries

The criteria for convergence have been triggered by the

chosen norm (that fixed terminology and state condi-
tions), the Tango control system architecture (centralized
database / distributed devices) and the possibilities to
expand the HMI to the web (choosing JSON as the de-
fault data format for Alarm Summaries).

Intended to reduce the number of different tools re-
quired for having a functional alarm system, the Alarm
database has been dropped to use Tango Properties in-
stead. Keeping the alarm formulas and configuration in
the Tango database helps to unify the quality-based and
formula-based alarm approaches, thus storing the configu-
ration for both types of alarms in the same database.

Following the same principle, it has been discarded the
idea to maintain a separate Alarm logging, thus reusing
the new HDB++ archiving for Tango [13].

HDB++ archiving allows to record alarms on state
change, and at the same time records all the events re-
ceived by the attributes involved in the formula (including

both value and quality changes). Thus, alarm changes and
attribute changes can be queried and represented from the
same database using already existing tools.

ALARMS IMPLEMENTATION

Reactive Alarms vs Polled Alarms
The PANIC API is currently connecting to two types of

device servers, PyAlarm, developed in Python by ALBA
Synchrotron, and AlarmHandler, developed in C++ by
Elettra Sincrotrone.

Both device servers acquire lists of formulas from the
Tango Database Properties, connect to the attributes ap-
pearing on the formulas and evaluate the results on each
attribute value change; triggering actions when required
by an alarm state change. Devices differ on how they
connect to attributes and react to value change.

PyAlarm is polled-based, so it means that attributes are
read periodically, updating the formula result at each
attribute reading. Attribute changes are cached and alarm
is not triggered until the result is True for a number of
iterations (the AlarmThreshold property). With a thresh-
old of 1, response time can be as short as 100 ms; but still
this minimal latency time is needed. In exchange, com-
plex formulas are enabled and the polling buffer allows to
use the average, the max peaks or the delta change of the
last N values acquired.

AlarmHandler instead is event-based. It means that
the device is just waiting for events sent from the Tango
Control System, reacting immediately when a change
event is received. In this case, latency is minimal, and
actions are executed immediately. Alarm formula parsing
is done in C++, and it is restricted to basic arithmetical
and logical operations between attribute values.

As demonstrated in the field, both systems are com-
plementary, as the AlarmHandler can be dedicated to fast
reaction on critical conditions while PyAlarm flexibility

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-WEP25

GUI Technologies and Frameworks, User Interfaces and Tools for Operations
WEP25

93

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

provides its best usability on interacting with multiple
devices or evaluating attribute evolution in time.

Alarm System Scalability
Another factor that triggered convergence of Alarm

Systems in Tango has been the need to increase system
scalability and performance for the new SKA project.

Alarms Systems can be scaled using different ap-
proaches. PANIC allows scaling by exporting each evalu-
ated alarm as a new attribute. Thus, new alarms can be
written using the result of the previous ones already eval-
uated. It allows having a detailed alarm for each subsys-
tem of a sector, and then summarize all values in a single
sector alarm. As example, vacuum alarms will contribute
to the alarm state of a sector, and at the same time are
grouped in a vacuum alarm for all sectors.

Alarm summaries can be done at client level (Alarm
View) or at device server level (Alarm Group). When
created at alarm level, it will behave as any other alarm,
triggering actions and exporting a new attribute, so the
system can be scaled to the next level. They can be ac-
cessed even from other Tango Control Systems, so the
hierarchy can be expanded indefinitely. Propagation times
at each level can be tuned using the AlarmThreshold and
PollingPeriod properties.

Alarm Annunciators
Besides its initial features (email, SMS, logging), the

current version of PANIC allows now to trigger any kind
of Tango command or python code script and provides the
capability of reusing alarm data and values in the execu-
tion of these commands. As example, it allows to send
alarm description to speakers, include attribute values in
an email or html report, move a motor a fixed number of
steps depending on a calculation, etc.

It also expands the logging mechanisms. HDB++ and
the Tango DB are used to keep history of alarm and at-
tribute changes and its configuration; but via external
commands other messaging or logging systems can be
easily integrated. It allowed PANIC to interact with some
popular applications like Telegram or Kibana and gener-
ate web reports based on JSON files [14].

CONCLUSIONS AND FUTURE
PANIC is a key tool for the daily operation of ALBA

Synchrotron Accelerators and Beamlines, it is the first
diagnostic tool used in order to check any incidence. It
offers an overview of currently triggered alarms, allowing
a full comprehension of the problem. Its second potential
resides in the customization of the alarms applications
that allows to suit the specific needs of each user group
and, in its integration with Taurus [15-16], eases a fast
response and troubleshooting in a user-friendly environ-
ment.

Having a common interface with Elettra’s Alarm-
Handler allow to expand PANIC functionality to a new
level, as now two complementary Alarm engines are
provided and scalability can be achieved combining per-
formance and flexibility at each level.

PANIC Use Cases
This are some practical examples of PANIC use cases

that have been enabled by the changes introduced in the
latest releases:

Protection of infrared mirrors; in this case an alarm
was required to, in case of a fast increase of temperature,
to be able to move a mirror outside of the vacuum cham-
ber in less than 200 ms. For this application alarms on
delta change, response to events and precise motor
movement execution were required.

Injection Permits: In the last upgrades of our Synchro-
tron facility, the number of injection modes are increasing
as well as the complexity of the rules that allow to inject
in the storage ring. PANIC has been used as an easy tool
to compile permission rules and convert it into attributes
that can be used as enable/disable of different operations.

Vacuum Systems: it is very important the continuous
monitoring of the pressure and equipment state, but be-
sides this, there are many variables belonging to other
sub-systems which could affect the vacuum status. PAN-
IC allows to extend the views and notifications of each
alarm to include additional information or parameters that
help to diagnose the problem. It also allows to crosscheck
temperatures against different ranges depending on the
current operation status (injection, maintenance, bakeout);
checking not only the value but its proper behaviour.

Testing and Deployment
Testing of PANIC is critical in to ensure its reliability

and scalability, guaranteeing that any modification in the
evaluation engine does not break the compatibility with
previous versions. A test suite has been developed [17]
and its currently expanded with the help of tango-simlib
project. Testing will be introduced in our continuous inte-
gration/deployment cycle based on Debian packages.

ACKNOWLEDGEMENT
The latest release of PANIC contains contributions

from many people: MaxIV, ESRF, ALBA, Elettra and
Solaris institutes as well as some private companies like
S2Innovation, IK and TCS.

The work of validating and suffering each new release
is shared with our users, the Operation and Vacuum
groups at ALBA. They contributed with their experience
to refine and improve alarm formulas and syntax.

REFERENCES
[1] Management of alarms systems for the process industries,

IEC-62682, IEC, 2014.

[2] S. Rubio-Manrique et al., “PANIC, A Suite for Visualiza-
tion, Logging and Notification of Incidents.”, in Proc.
PcaPAC’14, Karlsruhe, Germany, Oct. 2014, paper
FCO206.

[3] L. Pivetta, “Development of the Tango Alarm System”, in
Proc. ICALEPCS’05, Geneva, Switzerland, Oct. 2005, pa-
per WE3b.1-70.

[4] TANGO, http://www.tango-controls.org

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-WEP25

WEP25
94

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

GUI Technologies and Frameworks, User Interfaces and Tools for Operations

[5] Engineering Equipment and Material, Users’Association
(EEMUA) issued publication, 191, University of Manches-
ter, United Kingdom, 1999.

[6] M. Tennant, “Implementing Alarm Management Per the
ANSI/ISA-18.2 Standard”, Control Engineering, Septem-
ber 2013.

[7] PANIC, https://github.com/tango-controls/panic

[8] S. Rubio-Manrique et al. “Extending Alarm Handling in
Tango”, in Proc. ICALEPCS’11, Grenoble, France, Oct.
2011, paper MOMMU001.

[9] D. Fernández et al. “Alba, a Tango based Control System
in Python”, in Proc. ICALEPCS'09, Kobe, Japan, Oct.
2009, paper WEPMU005.

[10] S. Rubio et al., “Dynamic Attributes and other functional
flexibilities of PyTango”, in Proc. ICALEPCS'09, Kobe,
Japan, Oct. 2009, paper THP079.

[11] http://www.pythonhosted.org/panic/recipes.html

[12] G. Scalamera, L.Pivetta, S.Rubio-Manrique, “New devel-
opments for the Tango Alarm System”, in Proc.
ICALEPCS’17, Barcelona, Spain, Oct. 2017, paper TU-
PHA165.

[13] L. Pivetta et al., “New developments for the HDB++ Tango
Archiving System”, in Proc. ICALEPCS’17, Barcelona,
Spain, Oct. 2017, paper TUPHA 166.

[14] M. Broseta, D. Roldan, S. Rubio, A. Burgos, G. Cuni, “A
web-based report tool for Tango Control Systems via web-
sockets”, in Proc. ICALEPCS’17, Barcelona, Spain, Oct.
2017, paper TUPHA 173.

[15] S. Rubio et al., “Unifying all Tango Services in a single
Control Application”, in Proc. ICALEPCS’15, Melbourne,
Australia, Oct. 2015. paper WEPGF148.

[16] Taurus Library, http://www.taurus-scada.org

[17] S. Rubio-Manrique et al., “Reproduce Anything, Any-
where: A Generic Simulation Suite for Tango Control Sys-
tems”, in Proc. ICALEPCS’17, Barcelona, Spain, Oct.
2017, paper TUDPL01.

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-WEP25

GUI Technologies and Frameworks, User Interfaces and Tools for Operations
WEP25

95

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

