

TINE RELEASE 5.0: A FIRST LOOK
P. Duval, J. Szczesny, T. Tempel, DESY, Hamburg, Germany

S. Weisse, DESY, Zeuthen, Germany
M. Nikolova, EMBL-Hamburg, Germany
J. Bobnar, Cosylab, Ljubljana, Slovenia

Abstract

The TINE [1] control system evolved in great part to
meet the needs of controlling a large accelerator the size
of HERA, where not only the size of the machine and
efficient online data display and analysis were determin-
ing criteria, but also the seamless integration of many
different platforms and programming languages. Although
there has been continuous development and improvement
during the operation of PETRA, it has now been 10 years
since the last major release (version 4). Introducing a new
major release necessarily implies a restructuring of the
protocol headers and a tacit guarantee that it be compati-
ble with its predecessors, as any logical deployment and
upgrade strategy will entail operating in a mixed envi-
ronment. We report here on the newest features of TINE
Release 5.0 and on first experiences in its initial deploy-
ment.

INTRODUCTION
Originally a spin-off of the ISOLDE control system [2],

TINE is both a mature control system, where a great deal
of development has gone into the control system protocol
itself, offering a multi-faceted and flexible API with many
alternatives for solving data flow problems, and it is a
modern control system, capable of being used with both
cutting-edge and legacy technology. In addition to pub-
lish-subscribe and client-server transactions offered by
many other control systems, TINE supports multi-casting
and contract coercion [3]. As the TINE kernel is written in
straight C and based on Berkeley sockets, it has been
ported to most available operating systems. Java TINE,
with all of its features, is written entirely in Java (i.e. no
Java Native Interface). All other platforms, from .NET to
Matlab to LabView to Python, make use of interoperabil-
ity with the primary TINE kernel library. Furthermore,
any client or server application based on TINE and its
central services does not require any non-standard or third
party software (i.e. there are no LDAP, MySQL, Oracle,
Log4j, etc. dependencies).

The transition to TINE Release 4.0 was reported some
time ago [4], where numerous features of TINE were
enumerated, some of which (e.g. multicasting, redirection,
structured data) set it apart from other control systems in
common use. In addition, TINE offers a wide variety of
features designed for efficient data transport and commu-
nication in large systems.

A series of meetings in 2012 identified long-term goals
and established a roadmap for the future Release 5.0.
Many of these goals have been realized over the past sev-
eral years, showing up in new minor release versions of

TINE, the last being version 4.6.3. What sets Release 5.0
apart and warrants a new major release number are some
necessary changes to the protocol headers.

In the following we will identify and discuss those rel-
evant embellishments which have ensued since the 2012
meetings and have culminated in TINE Release 5.0.

RELEASE 4 ISSUES
As noted in the introduction, a general collaboration

meeting in 2012 identified certain aspects which needed
to be addressed. These include the following.

Protocol Issues
The TINE protocol makes use of Berkeley sockets and

TINE Release 4 originally did not properly support IP
version 6 (IPv6), as the socket API calls used were all
IPv4 centric. Although there is no mad rush to use IPv6, it
does offer advantages which could be of interest in the not
too distant future.

Header Issues
Several nice-to-have features, which potentially make

life easier for administrators tracking connectivity prob-
lems, could only be added by expanding the existing pro-
tocol headers (and thereby requiring a new major release).
For instance the process ID and application type of a con-
nected client are not available under Release 4.

In addition, some supported features required work-
arounds under some circumstances, which could also only
be ironed out by additional information not currently
available in the Release 4 protocol headers. For instance,
a generic client making a request to a server for a proper-
ty’s canonical data set can ask for the DEFAULT data set
(and thus avoid an independent query to obtain the prop-
erty characteristics). The returned data header will in fact
provide the proper data format, but not explicitly give the
correct data size. The latter can usually be inferred from
the number of data bytes returned. However, if the request
in question was truncated by the server, then the property
data size which should be used in a request is an unknown
quantity.

Finally, large data sets often require packet reassembly
in the TINE kernel. For example, IPv4 jumbo datagrams
can have a maximum length of 64 Kbytes. Any larger data
set will require assembling multiple packets. In Release 4,
the request and response headers hold the total message
size in bytes in an unsigned short, i.e. precisely the
64 Kbytes of an IPv4 jumbo datagram. TINE transfers can
of course use a TCP stream, or shared memory, rather
than datagrams, but the same packet reassembly exists.

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-WEP19

Control System and Component Integration
WEP19

77

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

That in itself is not a problem, except that it is often use-
ful to specify a larger number for the message size in
bytes, necessitating a 4-byte integer in the transport head-
ers, rather than the current 2-byte integer.

Other Issues
A TINE server developer can choose among a variety

of platforms on which to write his server, including Java,
Python, LabView, Matlab, and .NET, not to mention the
operating system. Nevertheless, a number of production
servers are written in C or C++, making direct use of the
C library API. C++ developers are most likely to make
use of Standard Template Library (STL) or Microsoft
Foundation Classes (MFC) libraries and headers. If this is
indeed the case, then certain measures must be taken to
avoid namespace collisions when tine.h is included in the
same code module as the STL or MFC headers. This pri-
marily has to do with macro definitions attempting to
override e.g. a class name and cannot be trivially solved
by using a namespace wrapper around tine.h.

RELEASE 5 SOLUTIONS
Protocol Issues

TINE Release 4.5.0 introduced the standard IPv6 sock-
et API to the TINE library and by Release 4.6.3 the TINE
libraries in both C and Java were fully implemented. The
general strategy is for clients and servers to make use of a
dual stack if possible, where a single bound listening
socket can support either protocol. IPv4 clients will then
only ever see an IPv4 address. Likewise an IPv6 client
will always see an IPv6 address, be it a real one or a
mapped IPv4 address (with a leading ‘::ffff:’. Thus this
aspect was concluded prior to the advent of Release 5.0.

Aside from removing the administrative headaches in-
volved in making use of private networks and exhausting
the IPv4 address space, IPv6 also offers jumbo datagrams
up to 4,294,967,295 bytes.

Header Issues
The TINE Release 5 request headers have indeed been

modified to pass a client’s process ID and application type
to a server, along with associated diagnostics which pass
this information along (see Figure 1). The application
type is composed of an 8-character string identifying the
principal kind of client making the call. A middle layer
server acting as a client will supply the text “FEC”, for
instance, whereas a Python client will supply the text
“PyTine”. A client’s process ID is perhaps of little or no
use if the client is a command line tool such as tget used
in a script. However, for persistent clients it is a useful
identification number which can expedite the search for a
specific client application should it become problematic.

The new response headers also categorically supply a
contract’s canonical data size as well as the size in bytes
and in elements returned in the call.

Entities such as the message size or MTU are also now
categorically 4-byte integers.

A contract response header also continues to supply ad-

ditional system and user stamps as 4-byte unsigned inte-
gers. These are in addition to the associated data’s time
stamp, and are typically used to provide an event or cycle
number tag to the associated data. That is, these were spe-
cifically not upgraded to 8-byte integers, primarily to
avoid issues on 32-bit (or 16-bit) platforms which do not
support them. A quantity such as an event number will
wrap only every 14 years or so even if incremented at
10 Hz, so this should not present a problem in the short
term, and will essentially never present a problem if the
said event number is reset at the beginning of a run. In the
long term, these quantities can be upgraded at some future
time, should the need arise.

Both the request and response headers also provide in-
formation on the endianness of the host machine and the
character encoding in use in the data provided. In the cur-
rent release (5.0.0) the endianness is fixed as little endian
and the character set is fixed as ASCII standard. One
could argue that a modicum of efficiency could be
squeezed from the system if only one of a client-server
pair engaged in byte swapping when it needed to. How-
ever, as a Release 5 server will need to support Release 4
clients, which expect little endian payloads, it would have
to make the decision to swap or not at the point of deliv-
ery. This is currently problematic for some data types,
such as a user-defined tagged structure and some non-
fixed length data types and requires extensive refactoring
of code. Therefore this issue has been postponed for some
future release, which of course will have to make the
identical swapping decision based on a client having a
release number greater than e.g. 5.2, etc.

Figure 1: An example of a server’s console command to
show its attached clients. New to Release 5 are the PID
and TYPE columns.

Other Issues
The problematic macro definitions (largely error/status

codes) have essentially all be replaced with enumerations
in Release 5. This has the advantage (as in the case of a
macro definition) of not requiring constant variables in a
program’s data segment. Furthermore enumerations easily
lend themselves to being used within a C++ namespace
wrapper. Thus using the TINE API directly in C++ code
no longer requires any extra measures to avoid namespace
collisions. A namespace wrapper around the TINE header
file tine.h is entirely optional.

UPGRADE STRATEGY
Any control system component making use of TINE

Release 5 must be fully compatible with earlier releases

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-WEP19

WEP19
78

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System and Component Integration

of TINE (predominately of Release 4 vintage). Release 5
servers must seamlessly interface with Release 4 (or Re-
lease 3) clients. And Release 5 clients must likewise be
able to access earlier vintage servers. With this as an an-
satz we can contemplate upgrading the control system
elements adiabatically, with the expectation that legacy
components will remain operational for months, if not
years.

There is no best moment to roll out a new major release
such as this, other than perhaps during a long shutdown,
where there is often a prolonged re-animation of the ma-
chine. This happens infrequently. In any event, in the case
of the PETRA III complex, no amount of unit testing will
catch all compatibility issues, largely due to the multi-
cultural aspects found in machine control there. For in-
stance, there are critical Java servers running on both
Windows and Linux hosts. There are 32-bit and 64-bit
servers running not only on Windows and Linux hosts,
but on VxWorks and LabView (also Windows) as well.
Client applications are liable to be rich client Java appli-
cations using ACOP beans or jDDD (with its own com-
plexities) or rich clients using Matlab, LabView, or using
ACOP.NET [5].

As TINE is feature rich, there tends to be a wide variety
of ways to do things. This in itself tends to increase the
general entropy in a test environment.

Thus the path to general deployment was to test as
much as possible, making use of the TINE unit server and
client in combinations of Release 4 interfacing with Re-
lease 5, and then to deploy and react during the machine
studies following a mini shutdown and prior to a user run.
Here one can see which hiccups occur during normal op-
erations and either rollback if necessary or find and fix (if
the operators can tolerate the hiccup during a bit of ex-
treme programing).

In fact, there were surprisingly few hiccups - three to be
exact, two of which led to a rollback. Nonetheless, at the
conclusion of the machine studies, TINE Release 5 was in
place as the de-facto standard, although there will be a
mixed scenario for some time to come. And to be sure,
one still must continue to be on the lookout for hiccups
and be ready to react.

LESSONS LEARNED
With the rollout of TINE Release 5, one generally

hopes that, as far as the users and customers are con-
cerned, nobody notices anything. That is to say, there are
no new bells and whistles that would make transfers more
efficient or offer new paradigms for application develop-
ment. The API is basically unchanged. On the other hand,
developers (especially server developers using the C li-
brary) will appreciate many of the new embellishments.
Likewise administrators will find it easier to track com-
munication problems.

The TINE core team will also be able to navigate
through both the Java and C library code more easily, due
to extensive refactoring. And as the latest TINE transport
headers are extensible, it should prove to be a straight-

forward task to add fields to the existing headers at some
time in the future should they be needed.

One somehow anticipates that by the mere act of shak-
ing things up, i.e. not letting sleeping dogs lie, so to
speak, various real problems (e.g. hidden race conditions)
will be exposed. In the initial phase of the ensuing users
run, two further upgrade issues in fact became apparent.
One of these, a long-standing TCP issue which might oc-
cur when large input data sets are being collected at the
server side, had almost no chance of expression in the
Release-4 world and only became visible when the con-
tract request headers increased in size in Release 5. This
issue surfaced on a particular server and led to a local
rollback until it was understood. The second issue in-
volved a check on multi-channel contract coercion logic
versus the minor release and revision numbers, which
suddenly jumped back to 0 and 0. This latter issue had no
visible consequences and was only noticed in that certain
applications appeared to suffer in certain aspects of trans-
fer efficiency. Both of these problems were promptly
dealt with and neither had any direct bearing on the user
run.

Introducing a new major release (or any systematic up-
grade, for that matter) is not something one takes lightly
at any time. In the absence of a full-blown mock facility
which is actually used under real conditions, there is vir-
tually no way to catch things other than to deploy and
standby in extreme programming mode. All in all, there
were surprisingly few hiccups due to specific software
problems.

An additional hiccup was due to the non-synchronized
deployment of system libraries. Although it had nothing
to do with any software problems or Release 4/Release 5
compatibility issues, it would of course not have arisen
had there been no attempt at an upgrade. Yet, this in itself
exposed an existing problem (in this case, a misunder-
standing in the software deployment on Windows hosts).

The moral of the story is: It sometimes takes a user run
to expose problems! By now the dust has settled, so to
speak, and one is gradually beginning to breathe more
easily.

REFERENCES
[1] TINE website; http://tine.desy.de
[2] R. Billings et al., “A PC Based Control System for the

CERN ISOLDE Separators”, in Proc. ICALEPCS’91, Tsu-
kuba, Japan, Nov. 1991.

[3] P. Duval and S. Herb, “The TINE Control System Protocol:
How to achieve high scalability and performance”, in Proc.
PCaPAC’10, Saskatoon, Canada, Oct. 2010, paper WE-
COAA02.

[4] P. Duval et al., “TINE Release 4 in Operation”, in Proc.
PCaPAC’08, Ljubljana, Slovenia, Oct. 2008, paper
MOX01.

[5] P. Duval et al., “ACOP.NET: Not Just Another GUI Build-
er”, presented at PCaPAC’18, Hsinchu, Taiwan, Oct. 2018,
paper THCB1, this conference (and references therein).

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-WEP19

Control System and Component Integration
WEP19

79

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

