
UPDATE ON THE STATUS OF THE FLUTE CONTROL SYSTEM
W. Mexner∗, E. Blomley, E. Bründermann, C. Fehlinger, A.-S. Müller, R. Ruprecht,

T. Schmelzer, M. Schuh, N.-J. Smale, Karlsruhe Institute of Technology, Karlsruhe, Germany
S. Marsching, aquenos GmbH, Baden-Baden, Germany

I. Kriznar, Cosylab, Ljubljana, Slovenia

Abstract
The first phase of FLUTE, a new linac based test facility

and THz source, is currently being commissioned at the
Karlsruhe Institute of Technology (KIT). It consist of an RF
photo gun and a traveling wave linac accelerating electrons to
beam energies of 40 to 50 MeV. The control system is based
on a virtualized infrastructure running Ubuntu Linux and
Linux KVM. As base for the SCADA system we use EPICS
3.15 with Control System Studio (CSS) for the GUI. The
long term data storage is provided by a Cassandra NoSQL
database. This contribution will present the architecture and
the current status of the FLUTE control system.

INTRODUCTION
FLUTE [1] is a new R&D linac accelerator (see Fig. 1)

offering beam energies of 7 to 41 MeV for the development of
accelerator technology, new diagnostics and instrumentation
for fs bunches. It will be used as a test facility for the study of
bunch compression with all related effects and instabilities
like space charge, coherent synchrotron radiation (CSR) as
well as the different generation mechanisms for coherent
THz radiation. Furthermore it will serve as a broad band
accelerator-based source for ultra-short and intensive THz
pulses, e.g. for time- & frequency-domain spectroscopy of
kinetic processes.

CONTROL SYSTEM OVERVIEW
The design of the FLUTE control system [2] is based on

EPICS 3.15 with Control System Studio (CSS) as the main
operators interface to the control system.

The DAQ has been driven by the demand to make sys-
tematic studies of the beam compression and the generation
of THz radiation. The pulse synchronous (10 Hz) data-
acquisition based on a Cassandra NoSQL database has to
record for each pulse diagnostic information about RF pulses,

∗ wolfgang.mexner@kit.edu

laser pulses, pulse charge and of course the overall accelera-
tor settings.

Operator GUI Concept
The top level panels of the operator GUI have an synaptic

approach. A 3D model of the Accelerator is used to for
easy orientation (see Fig. 2). An error is visually connected
to the device and to the position along the machine. The
corresponding control panel for the device can be opened
by a direct link on the panel. In addition all device panels
are included in a list, which can be used to navigate to the
devices, grouped by their task. As the accelerator is in its first
phase the starting overview panel shows the injector section.
For each of the next sections there are also synaptic overview
panels planned as well as for the complete machine.

Stepper Motor Control
The FLUTE accelerator and the KARA Beamlines are

using the same inhouse developed stepper motor control
and driver concept. For motion control, we use the OMS
(Pro-Dex) 5 axis Ethernet based MAXNET controllers and
as 2 phase motor drivers we use the BCD130.x family of
MIDDEX electronic allowing up to 12800 micro steps per
revolution. EPICS hardware integration was done with the
Pro-dex OMS asyn motor base axis support. For axes using
an encoder, we experienced the problem that the motors
would sometimes move randomly. We could solve these
problems by applying a patch that synchronizes the motor
with the encoder position before every movement.

Timing System
The timing system for FLUTE is based on the hardware

components from Micro-Research Finland [3]. We use the
VME form-factor for both the event generator (EVG) and
the majority of event receivers (EVRs). However, we do not
use the VMEbus for controlling these boards. Instead, we
use their Ethernet interface to control them using a UDP/IP-
based protocol.

E-Gun

Solenoid
THz generation

Split ring
resonator Low energy 

spectrometer

Gun laser

BPM Screen monitor ICT EO-monitor Quadrupole Dipole
Photon beam path
Electron beam path

LINAC

Steerer(H/V)

SR port

Scraper 

Faraday cup

/dump

Farady cup

Figure 1: Scheme of the FLUTE accelerator with all installed and planned components [1].

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-WEP10

WEP10
54

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System and Component Integration



Figure 2: CSS Synaptic Operator view.

As the traditional EPICS device support for MRF devices
[4] did not support this way of controlling the devices and
its architecture did not include a layer for implementing
different ways of transport, we developed our own EPICS
device support [5] which includes such an abstraction layer.

Thanks to the flexibility of this new device support, we can
essentially use the same code for controlling MRF boards
over the network and controlling them locally over PCIe,
which we need for some µTCA EVRs. The same device
support is also used for the timing system of KIT’s KARA
facility, where it has proven to work reliably as well.

RF System
The RF uses a pulse type Klystron to produce a 4 µs

long 3 GHz burst of 45 MW of power. This power is split
between the E-Gun and the LINAC. The power supplies, for
charging the Pulse Forming Network (PFN) and controlling
the klystron coils are all slow control using PLCs, which
are fully integrated into EPICS and CSS. However, MTCA
based controllers such as the laser synchronization feedback
loop, Low Level Radio Frequency feedback loop (LLRF)
, and BPM electronics (readout via MTCA) which were
developed for the FEL at DESY are not yet fully integrated to
EPICS. As a stepping stone to full integration, these devices
are presently used with DOOCS and JDDD installed on
the devices. For standard configuration settings a remote
desktop is used to access the JDDD panels. For the ‘daily
operator use’, the more used configuration parameters have
been integrated to EPICS and CSS using either gateways
or Chimera TK adapter (the latter developed in cooperation
by aquenos, DESY, HZDR and TUD). These methods are
also used to transfer fast data capture to the operator display
and database for storage. This is also true for the timing
distribution system which, because of historical reasons,
have a mix of the MRF VME and the X2 MTCA timing
systems.

The software of the LLRF systems is based on the
ChimeraTK framework [6]. Thanks to the use of this frame-

work, essentially the same software can be used in control-
system environments based on DOOCS, EPICS, or OPC-UA,
making it possible to use the same hardware and software
in a number of facilities like ELBE, the European XFEL,
FLASH, FLUTE, and TARLA with only minor tweaks. This
has helped to reduce the man-power needed to commission
the system at FLUTE significantly.

SERVER INFRASTRUCTURE
Most services needed for FLUTE run within virtual ma-

chines on a virtualized infrastructure. We use the Linux
Kernel-based Virtual Machine (KVM) [7] for hosting both
Linux and Windows virtual machines (VMs). We use
Ubuntu 14.04 LTS as the operating system for the VM hosts
and manage the VMs using libvirt [8]. To ensure that ba-
sic services like network gateway (firewall) and DNS are
always available, these essential services are provided by
multiple VMs, hosted on different host systems. These host
systems use a dedicated direct link for heartbeats, so that
high-availability management is not affected by disruptions
of the networking service.

This combination has proved very reliable: This virtual-
ized infrastructure (based on two host machines) has been
running for four years while needing virtually zero mainte-
nance. In the near future, we plan to migrate the system to
Ubuntu 18.04 LTS so that we can continue to apply critical
security updates past April 2019.

We assessed that virtualization is not the best option for
services with significant demands on the CPU or memory.
For such services, sharing hardware resources does not make
sense because it would only increase the demands on the
virtualization hosts’ hardware, while not profiting from the
sharing of resources (which is the primary objective of vir-
tualization in the first place).

For this reason, we also use three Supermicro Microcloud
chassis [9], each containing 12 nodes. Each node is equipped
with a Xeon E3 processor, 32 GBs of memory and two hard-
disk drives. We use these nodes to run services like the
Cassandra PV Archiver [10] that provides long-term storage
of process data and the service for processing camera images.

NETWORK INFRASTRUCTURE
In order to improve the reliability and security of the

network services, we use a dedicated network for all mea-
surement and control equipment of the accelerator. The
network is completely separated from the institute’s office
network. The VM hosts are based in both the dedicated
accelerator network and the office network, so that selected
VMs can provide services for transferring data between the
two networks in a secure, well-controlled fashion. One ex-
ample of such a service is the EPICS PV Gateway [11] that
enables users to access EPICS process variables from their
office computers, but limits all access to be read-only, thus
ensuring no one can accidentally interfere with the operation
of the accelerator.

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-WEP10

Control System and Component Integration
WEP10

55

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 3: First FLUTE Beam.

CSS CLIENT DEPLOYMENT
The deployment of CSS consists of two separate, but

closely related tasks: First, deploying CSS itself (the ac-
tual software along with its specific configuration for the
environment), and second deploying the panels used inside
CSS. The first task could be accomplished through means
of the operating system (e.g. packaging and deploying CSS
as a Debian package), but the panels change too frequently
to make this a feasible approach for them. In addition to
that, due to its heritage from Eclipse, CSS works around the
concept of a “workspace” and no two instances using the
same workspace can run at the same time.

These issues caused us to develop a couple of Python
scripts that take care of installing or updating CSS, prepar-
ing a fresh workspace on each start, and cleaning up this
workspace after CSS is closed. These scripts were originally
developed for use at KIT’s KARA facility, but they were
quickly and easily adapted for use at FLUTE. These scripts
are distributed alongside the panels as part of a Subversion
repository. When the local working copy of the repository is
updated, both the panels and the scripts are updated and thus
the version of the panels and the version of CSS that is auto-
matically installed by the scripts always match. By creating
a fresh workspace on every start, the operators always start
with the same, familiar view (Fig. 2), regardless of which
panels have been opened or closed previously. This was a
crucial factor to improve the acceptance of CSS as the user
interface for operators.

SUMMARY AND OUTLOOK
In May 2018 first electron beam was produced and ob-

served by different diagnostic systems such as the screen

monitors (see Fig. 3), beam position monitors, integrated
current transformer, and Faraday cup. Based on the recorded
data the different systems can be calibrated which is needed
for the full integration into the control system. At FLUTE
the first user’s experiment is foreseen in 2019 within the
ARIES Transnational Access programme funded from the
European Union’s Horizon 2020 R&I programme under GA
No 73 08 71.

ACKNOWLEDGEMENT
The authors would like to thank DESY’s MSK group and

KIT’s Institute for Data Processing and Electronics for their
support regarding the RF system. They would also like to
thank PSI’s diagnostics group for their help regarding beam
diagnostics.

REFERENCES
[1] A. Malygin et al., IPAC’18, Vancouver, 2018, TPHMF068.

A. Malygin, A. Bernhard, E. Bründermann, A. Böhm, S.
Funkner, I. Križnar, et al., A. Malygin et al., “Commission-
ing Status of FLUTE”, in Proc. IPAC’18, Vancouver, BC,
Canada, Apr/May 2018, pp. 4229–4231. doi:10.18429/
JACoW-IPAC2018-THPMF068

[2] S. Marsching et al., “Status of the FLUTE Control Sys-
tem”, in Proc. PCaPAC’14, Karlsruhe, Germany, 2014, paper
WPO013.

[3] Micro-Research Finland, http://www.mrf.fi/

[4] EPICS mrfioc2 device support, http://epics.
sourceforge.net/mrfioc2/

[5] EPICS MRF device support provided by KIT, https:
//github.com/kit-ibpt/epics-mrf

[6] M. Killenberg et al., “Abstracted Hardware and Middleware
Access in Control Applications”, in Proc. ICALEPCS’17,
Barcelona, Spain, Oct. 2017. doi:10.18429/JACoW-
ICALEPCS2017-TUPHA178

[7] Linux Kernel-based Virtual Machine, https://www.
linux-kvm.org/

[8] libvirt Virtualization API, https://libvirt.org/

[9] Supermicro MicroCloud, https://www.supermicro.
com/products/nfo/MicroCloud.cfm

[10] Cassandra PV Archiver, https://oss.aquenos.com/
cassandra-pv-archiver/

[11] EPICS PV Gateway, https://epics.anl.gov/
extensions/gateway/index.php

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-WEP10

WEP10
56

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System and Component Integration


