
DEVELOPING AND VALIDATING OPC-UA BASED INDUSTRIAL
CONTROLS FOR POWER SUPPLIES AT CERN

Michael Ludwig, Marc Bengulescu, Ben Farnham, Jonas Arroyo Garcia, Pablo Gonzalez Jimenez,
Fernando Varela, CERN, Geneva, Switzerland

Abstract
The industrial control systems of CERN's experiments

are undergoing major renovation since 2017 and well into
CERN's second Long Shutdown (LS2) until the end of
2019. Each detector power-supply control system runs
several hundred software instances consisting of many
different components in parallel on a large scale, broadly
distinguishable as servers and clients. Our accumulated
experience during LHC runs proves that some complex
control issues are impossible to detect using stand-alone
components on a small scale only. Furthermore, new
components must be developed well before the electron-
ics becomes available, without impact on operations.
Moreover, during LS2, the improved and now widely
established Open Protocol Communication Unified Archi-
tecture (OPC-UA) replaces OPC-DA as middleware pro-
tocol. For these reasons, we developed a simulation envi-
ronment to emulate the real, and valuable, CAEN power-
supply electronics underneath the OPC-UA servers. This
distributed simulation is configurable to mimic and ex-
ceed the nominal conditions during production and pro-
vides a repeatable setup for validation. This paper dis-
cusses the functionality and use of this simulation service.

WHY A SIMULATION?
The control system for the CERN experiments can be

segmented into three layers. Firstly, the electronics layer
for power supplies and many other components, which
includes commercially available modules connected to
the detector sub-parts. Some CERN experiments need
many thousands of power channels laid out in “electronic
trees” spanning a wide variety of characteristics and be-
haviour, generally using networked modules from differ-
ent commercial vendors running black box firmware.

The second layer provides the OPC-UA [1,2] interfaces
to the different kinds of power supply modules. OPC-UA
provides standardized abstraction and communication,
and replaces its now obsolete predecessor OPC-DA. Sev-
eral tens of server instances connect to the power chan-
nels for a typical experiment, each server with its specific
electronic tree.

Lastly, the client layer provides classical supervisory
control and data acquisition (SCADA) services including
logging, error handling and analysis, history data storage
and functional abstractions like finite state machines and
interfaces for specific detector functionality. The two
uppermost layers rely entirely on the accurate and robust
translation of the physical electronic trees into the soft-
ware representation with the intended functionality. A
commercial object-orientated SCADA system, WinCC-
OA [3], is used to realize much of the upmost layer. This

now mature control system has to undergo updates and
functional fixes, which all have impact on mission criti-
cality in some way, but where their deployment should
not require any dedicated production time.

The investigation of issues and the actual deployment
of updates requires very careful coordination and is, gen-
erally, a delicate process for the two following reasons.
Firstly, still affordable laboratory tests can never approach
the same complexity, scale and diversity as a real running
system with inputs and errors. Any new versions of con-
trol components, concerning also new versions of the
electronics, need testing and validation through all control
layers. Problems related to scaling, which were reproduc-
ible in the experiments in the past but not in laboratory
tests, and could not be confirmed by the vendor either,
need to be investigated on appropriate scale and complex-
ity, to then be followed up adequately.

Secondly, a system with delicate high voltage detector-
hardware must not be used for testing critical and safety
related software. Even if one would take the risk, it would
be very hard to identify and re-produce any complex
failure scenario for further debugging. A satisfying valida-
tion for a working control system of that scale could be
obtained by performing global centralized “dry runs”
using real electronics, but disconnected high voltage out-
put stages, yet such runs are deemed impractical and too
expensive. For these reasons a scalable low-level platform
which provides vendor unified simulation (VENUS) for
power supplies together with a realistic behaviour is
needed as an efficient and flexible solution which can also
support training and development prototypes.

REQUIREMENTS

Scale and Validation
Both issues, scale and validation, can be efficiently ad-

dressed with a simulation environment which emulates
the electronics of the first layer. Large scale “developer
tests” are possible, being much more independent on
whether the electronics is available, in production, or
even only a planned purchase. Replaying complex and
demanding scenarios should push various controls soft-
ware components in the upper layer to their respective
limits, thus providing useful stress tests. If scale and
complexity of the production systems can be significantly
exceeded in the simulation, we assume with good confi-
dence that our systems are adequately validated.

Performance and Complexity
Changing parameters in the electronic tree create events

with associated data payload, which are pushed upwards
to the subscribing server. Event rates of several kHz are

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-WEP04

Control System and Component Integration
WEP04

35

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

common for real electronic trees of some hundred chan-
nels. Saturation typically occurs from about 10kHz on-
wards, then some buffering and filtering strategies are
applied from the server on and upwards. The simulation
should be able to deliver event rates significantly exceed-
ing the real electronics. It should also potentially scale
better than the most complex real electronics tree and it
should be configurable and manageable in compatible
ways. Evidently, it must integrate seamlessly to emulate
the behaviour of the first layer, and it should be capable of
producing and repeating scenarios beyond nominal condi-
tions to prompt associated error behaviour.

Figure 1: VENUS architecture in the case of CAEN. Col-
ors represent types of communication: vendor specific
(red), Ømq-protocol (violet) or OPC-UA (blue).

Furthermore, the simulation should replace power sup-
plies of all major commercial systems used at CERN [4],
in terms of software. All of the following discussion re-
fers to the CAEN power supply systems, since they are a
widely used system at CERN, provide deep functional
complexity including radiation hard sub-trees and feature
specific powering options. Simulation of the remaining
vendors follows the same principles adapted for their
systems.

ARCHITECTURE
The VENUS architecture is shown in Fig. 1. The

SCADA layer interfaces to OPC-UA CAEN servers,
which communicate with either the real electronics
through the CAEN API, or through the replacement API
for simulation. A configured VENUS Engine provides the
same underlying behaviour by software and is managed
by a separate OPC-UA Pilot Server. The simulation re-
places the first control layer entirely, where the API for
each type of real power supply defines the behaviour of
the simulation in each case. The VENUS glue establishes
isolated communication to the VENUS engine for the
specific CAEN API. Each instance of a VENUS engine is
configured to reflect the specific electronics tree to be
played.

Configuration
The configuration defines the instances of each type of

module including any electronic subtrees for the radiation
hard versions. The firmware of each module determines
its real API, which evolves over many years and must be
reproduced in all cases. Configurations can be discovered
from existing electronic trees, designed to produce large
scale stress test scenarios with subtrees and mixed module
types, define consistency tests and also model yet-to-be-
purchased electronics.

Pilot Interface
Further functionality beyond the scope of the vendor

API is needed to provide accurate power supply behav-
iour. A dedicated OPC-UA pilot server communicates
directly to the VENUS engine in order to perform:
 channel load management; a load model needed to

draw currents,
 ramp switching; an external signal switching between

two parameter sets for pre-ramping and ramping,
 current-limit tripping; an excess current switches the

channel off in a well-defined manner,
 artificial noise; in order to mimic randomly occurring

behaviour like current spikes and degrading loads,
 bulk-channel operations; like tripping selected chan-

nels by decreasing their loads to draw currents ex-
ceeding their nominal limits,

 event clock tuning to produce higher or lower event
rates for use in stress test,

 status and health monitoring of the engine.
The specific functionality in the SCADA layer relating

to the pilot is kept carefully isolated from all other clients.

DESIGN AND INTEGRATION

Building Standards
The building, integration and execution of VENUS as a

scaling service is shown in Fig. 2. A framework for rapid
OPC-UA server development, quasar [5], is used to gen-
erate server skeleton code for a configured quasar project.
This quasar project configuration defines the layout and
characteristics of the OPC-UA address space; interface to
the SCADA clients. Quasar supports two toolkits, Unified
Automation (commercial) [6] and Open62541 (open
source) [7], and guarantees compliance to OPC-UA. The
artefacts, VENUS engine and OPC-UA servers, are built
from specific source code together with the generated
protocol buffer message formats [8] and the quasar gener-
ated codes. All artefacts are continuously built using Jen-
kins-CI to guarantee integrity.

API Serialisation
Each function call of the vendor API, which is imple-

mented in plain C for CAEN, is independent of every
other call to a large extent and no state information is kept
in the API. Therefore communication between the CAEN
API and the object-orientated engine can be realized in
transactional pairs of request-reply messages in the VE-

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-WEP04

WEP04
36

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System and Component Integration

NUS glue. Each message pair maps to a specific API
function call and its results. Message pairs need to be
executed as transactions to protect against re-entrant calls
and parallel requests stemming from multi-threaded serv-

ers. The initial calls for hardware discovery are issued
serially from the server and the simulation engine replies
back with the corresponding part of its electronic tree.

Figure 2: Building, integration and deployment as a service in a cluster of virtual machines. The workflow stages
source, build, deliver, instantiate, deploy and execute are shown. Colour and shape coding: standards (pink, yellow,
blue), tools (grey, round corners), infrastructure service (green), source codes (sharp corners), complex clients (cloud).

Deployment and Scalability
A set of all servers and the engine, together with their

runtime dependencies and previously validated configura-
tions for the electronic trees is delivered into a container-
ized docker image (CDI) [9] as shown in Figure 2. Both
OPC-UA sdk-flavours for the servers may be used and
compared, but the open6-sdk is preferred for the pilot due
to licensing restrictions. The CDI can also be dissociated
into separate units which communicate over network for
further distributed stress testing. The orchestration for
simulation, which is optimized for continuously running
services, selects one of the valid configurations for de-
ployment and runs it in a virtual machine (VM). Many
VMs with identical or different configurations are used to
realize simple or complex scenarios for the SCADA client
layer. Up to one hundred VMs can be managed using the
available resources, where each VM offers some ten to
several thousand channels.

CONCLUSION AND OUTLOOK
The need for a fast, flexible and highly scalable simula-

tion service arises from the ongoing control system reno-
vation at CERN for LS2. As long as the vendor API in
question is easily serializable, a clean solution based on
distributed networking with protected message pairs can
be naturally found. A seamless integration, without any
impact on the very complex SCADA layer, is provided by
replacing the vendor’s implementation of the API and

adding a pilot interface for further management. Setups
can be run all-in-one on single computers or widely dis-
tributed. Since the VENUS implementation uses C and
C++ it can cover event rates well above and below the
characteristics of the real electronics. The construction of
challenging stress tests becomes thus possible, leading to
a systematic and repeated validation of a large, complex
and mature system, as used in the experiments. Further
work is ongoing to extend VENUS for the other vendors.

REFERENCES
[1] W. Mahnke, S.-H. Leitner and M. Damm, OPC Unified

Architecture. Springer, Berlin Heidelberg, Germany, 2009.

[2] The OPC Foundation, “OPC Unified Architecture”,
http://opcfoundation.org/opc-ua/

[3] WinCC-OA, http://www.etm.at

[4] CAEN, http://www.caen.it;

 ISEG, http://www.iseg-hv.com;

 WIENER, http://www.wiener-d.com

[5] P. P. Nikiel, B. Farnham, S. Schlenker, C.-V. Soare, V.
Filimonov and D. Abalo Miron, “Quasar – A generic
framework for rapid development of OPC UA servers”, in
Proc. ICALEPCS’15, Melbourne, Australia, Oct. 2015, pa-
per WEB3O02.

[6] Unified Automation GmbH, “C++ based UA Server SDK”.

[7] Open62541, http://open62541.org

[8] Google Protocol Buffers,
https://developers.google.com/protocol-buffers/

[9] Docker container technology,http://www.docker.com

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-WEP04

Control System and Component Integration
WEP04

37

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

