
DEVELOPING AND VALIDATING OPC-UA BASED INDUSTRIAL         
CONTROLS FOR POWER SUPPLIES AT CERN 

Michael Ludwig, Marc Bengulescu, Ben Farnham, Jonas Arroyo Garcia, Pablo Gonzalez Jimenez, 
Fernando Varela, CERN, Geneva, Switzerland 

Abstract 
The industrial control systems of CERN's experiments 

are undergoing major renovation since 2017 and well into 
CERN's second Long Shutdown (LS2) until the end of 
2019. Each detector power-supply control system runs 
several hundred software instances consisting of many 
different components in parallel on a large scale, broadly 
distinguishable as servers and clients. Our accumulated 
experience during LHC runs proves that some complex 
control issues are impossible to detect using stand-alone 
components on a small scale only. Furthermore, new 
components must be developed well before the electron-
ics becomes available, without impact on operations. 
Moreover, during LS2, the improved and now widely 
established Open Protocol Communication Unified Archi-
tecture (OPC-UA) replaces OPC-DA as middleware pro-
tocol. For these reasons, we developed a simulation envi-
ronment to emulate the real, and valuable, CAEN power-
supply electronics underneath the OPC-UA servers. This 
distributed simulation is configurable to mimic and ex-
ceed the nominal conditions during production and pro-
vides a repeatable setup for validation. This paper dis-
cusses the functionality and use of this simulation service. 

WHY A SIMULATION? 
The control system for the CERN experiments can be 

segmented into three layers. Firstly, the electronics layer 
for power supplies and many other components, which 
includes commercially available modules connected to 
the detector sub-parts. Some CERN experiments need 
many thousands of power channels laid out in “electronic 
trees” spanning a wide variety of characteristics and be-
haviour, generally using networked modules from differ-
ent commercial vendors running black box firmware. 

The second layer provides the OPC-UA [1,2] interfaces 
to the different kinds of power supply modules. OPC-UA 
provides standardized abstraction and communication, 
and replaces its now obsolete predecessor OPC-DA. Sev-
eral tens of server instances connect to the power chan-
nels for a typical experiment, each server with its specific 
electronic tree.  

Lastly, the client layer provides classical supervisory 
control and data acquisition (SCADA) services including 
logging, error handling and analysis, history data storage 
and functional abstractions like finite state machines and 
interfaces for specific detector functionality. The two 
uppermost layers rely entirely on the accurate and robust 
translation of the physical electronic trees into the soft-
ware representation with the intended functionality. A 
commercial object-orientated SCADA system, WinCC-
OA [3], is used to realize much of the upmost layer. This 

now mature control system has to undergo updates and 
functional fixes, which all have impact on mission criti-
cality in some way, but where their deployment should 
not require any dedicated production time. 

The investigation of issues and the actual deployment 
of updates requires very careful coordination and is, gen-
erally, a delicate process for the two following reasons. 
Firstly, still affordable laboratory tests can never approach 
the same complexity, scale and diversity as a real running 
system with inputs and errors. Any new versions of con-
trol components, concerning also new versions of the 
electronics, need testing and validation through all control 
layers. Problems related to scaling, which were reproduc-
ible in the experiments in the past but not in laboratory 
tests, and could not be confirmed by the vendor either, 
need to be investigated on appropriate scale and complex-
ity, to then be followed up adequately. 

Secondly, a system with delicate high voltage detector-
hardware must not be used for testing critical and safety 
related software. Even if one would take the risk, it would 
be very hard to identify and re-produce any complex 
failure scenario for further debugging. A satisfying valida-
tion for a working control system of that scale could be 
obtained by performing global centralized “dry runs” 
using real electronics, but disconnected high voltage out-
put stages, yet such runs are deemed impractical and too 
expensive. For these reasons a scalable low-level platform 
which provides vendor unified simulation (VENUS) for 
power supplies together with a realistic behaviour is 
needed as an efficient and flexible solution which can also 
support training and development prototypes. 

REQUIREMENTS 

Scale and Validation 
Both issues, scale and validation, can be efficiently ad-

dressed with a simulation environment which emulates 
the electronics of the first layer. Large scale “developer 
tests” are possible, being much more independent on 
whether the electronics is available, in production, or 
even only a planned purchase. Replaying complex and 
demanding scenarios should push various controls soft-
ware components in the upper layer to their respective 
limits, thus providing useful stress tests. If scale and 
complexity of the production systems can be significantly 
exceeded in the simulation, we assume with good confi-
dence that our systems are adequately validated. 

Performance and Complexity 
Changing parameters in the electronic tree create events 

with associated data payload, which are pushed upwards 
to the subscribing server. Event rates of several kHz are 
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common for real electronic trees of some hundred chan-
nels. Saturation typically occurs from about 10kHz on-
wards, then some buffering and filtering strategies are 
applied from the server on and upwards. The simulation 
should be able to deliver event rates significantly exceed-
ing the real electronics. It should also potentially scale 
better than the most complex real electronics tree and it 
should be configurable and manageable in compatible 
ways. Evidently, it must integrate seamlessly to emulate 
the behaviour of the first layer, and it should be capable of 
producing and repeating scenarios beyond nominal condi-
tions to prompt associated error behaviour. 

 
Figure 1: VENUS architecture in the case of CAEN. Col-
ors represent types of communication: vendor specific 
(red), Ømq-protocol (violet) or OPC-UA (blue). 

Furthermore, the simulation should replace power sup-
plies of all major commercial systems used at CERN [4], 
in terms of software. All of the following discussion re-
fers to the CAEN power supply systems, since they are a 
widely used system at CERN, provide deep functional 
complexity including radiation hard sub-trees and feature 
specific powering options. Simulation of the remaining 
vendors follows the same principles adapted for their 
systems. 

ARCHITECTURE 
The VENUS architecture is shown in Fig. 1. The 

SCADA layer interfaces to OPC-UA CAEN servers, 
which communicate with either the real electronics 
through the CAEN API, or through the replacement API 
for simulation. A configured VENUS Engine provides the  
same underlying behaviour by software and is managed 
by a separate OPC-UA Pilot Server. The simulation re-
places the first control layer entirely, where the API for 
each type of real power supply defines the behaviour of 
the simulation in each case. The VENUS glue establishes 
isolated communication to the VENUS engine for the 
specific CAEN API. Each instance of a VENUS engine is 
configured to reflect the specific electronics tree to be 
played. 

Configuration 
The configuration defines the instances of each type of 

module including any electronic subtrees for the radiation 
hard versions. The firmware of each module determines 
its real API, which evolves over many years and must be 
reproduced in all cases. Configurations can be discovered 
from existing electronic trees, designed to produce large 
scale stress test scenarios with subtrees and mixed module 
types, define consistency tests and also model yet-to-be-
purchased electronics. 

Pilot Interface 
Further functionality beyond the scope of the vendor 

API is needed to provide accurate power supply behav-
iour. A dedicated OPC-UA pilot server communicates 
directly to the VENUS engine in order to perform: 
 channel load management; a load model needed to 

draw currents, 
 ramp switching; an external signal switching between 

two parameter sets for pre-ramping and ramping, 
 current-limit tripping; an excess current switches the 

channel off in a well-defined manner, 
 artificial noise; in order to mimic randomly occurring 

behaviour like current spikes and degrading loads, 
 bulk-channel operations; like tripping selected chan-

nels by decreasing their loads to draw currents ex-
ceeding their nominal limits, 

 event clock tuning to produce higher or lower event 
rates for use in stress test, 

 status and health monitoring of the engine. 
The specific functionality in the SCADA layer relating 

to the pilot is kept carefully isolated from all other clients. 

DESIGN AND INTEGRATION 

Building Standards 
The building, integration and execution of VENUS as a 

scaling service is shown in Fig. 2. A framework for rapid 
OPC-UA server development, quasar [5], is used to gen-
erate server skeleton code for a configured quasar project. 
This quasar project configuration defines the layout and 
characteristics of the OPC-UA address space; interface to 
the SCADA clients. Quasar supports two toolkits, Unified 
Automation (commercial) [6] and Open62541 (open 
source) [7], and guarantees compliance to OPC-UA. The 
artefacts, VENUS engine and OPC-UA servers, are built 
from specific source code together with the generated 
protocol buffer message formats [8] and the quasar gener-
ated codes. All artefacts are continuously built using Jen-
kins-CI to guarantee integrity. 

API Serialisation 
Each function call of the vendor API, which is imple-

mented in plain C for CAEN, is independent of every 
other call to a large extent and no state information is kept 
in the API. Therefore communication between the CAEN 
API and the object-orientated engine can be realized in 
transactional pairs of request-reply messages in the VE-
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NUS glue. Each message pair maps to a specific API 
function call and its results. Message pairs need to be 
executed as transactions to protect against re-entrant calls 
and parallel requests stemming from multi-threaded serv-

ers. The initial calls for hardware discovery are issued 
serially from the server and the simulation engine replies 
back with the corresponding part of its electronic tree. 
 

Figure 2: Building, integration and deployment as a service in a cluster of virtual machines. The workflow stages 
source, build, deliver, instantiate, deploy and execute are shown. Colour and shape coding: standards (pink, yellow, 
blue), tools (grey, round corners), infrastructure service (green), source codes (sharp corners), complex clients (cloud). 
 

Deployment and Scalability 
A set of all servers and the engine, together with their 

runtime dependencies and previously validated configura-
tions for the electronic trees is delivered into a container-
ized docker image (CDI) [9] as shown in Figure 2. Both 
OPC-UA sdk-flavours for the servers may be used and 
compared, but the open6-sdk is preferred for the pilot due 
to licensing restrictions. The CDI can also be dissociated 
into separate units which communicate over network for 
further distributed stress testing. The orchestration for 
simulation, which is optimized for continuously running 
services, selects one of the valid configurations for de-
ployment and runs it in a virtual machine (VM). Many 
VMs with identical or different configurations are used to 
realize simple or complex scenarios for the SCADA client 
layer. Up to one hundred VMs can be managed using the 
available resources, where each VM offers some ten to 
several thousand channels.  

CONCLUSION AND OUTLOOK 
The need for a fast, flexible and highly scalable simula-

tion service arises from the ongoing control system reno-
vation at CERN for LS2. As long as the vendor API in 
question is easily serializable, a clean solution based on 
distributed networking with protected message pairs can 
be naturally found. A seamless integration, without any 
impact on the very complex SCADA layer, is provided by 
replacing the vendor’s implementation of the API and 

adding a pilot interface for further management. Setups 
can be run all-in-one on single computers or widely dis-
tributed. Since the VENUS implementation uses C and 
C++ it can cover event rates well above and below the 
characteristics of the real electronics. The construction of 
challenging stress tests becomes thus possible, leading to 
a systematic and repeated validation of a large, complex 
and mature system, as used in the experiments. Further 
work is ongoing to extend VENUS for the other vendors. 
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