
EtherCAT DRIVER AND TOOLS FOR EPICS AND LINUX AT PSI

D. Maier-Manojlovic, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

Abstract

A combined EPICS/Linux driver package has been de-

veloped at PSI, to allow for simple and mostly automatic

setup of various EtherCAT configurations. The driver is

capable of automatic scan of the existing devices and

modules, followed by self-configuration and finally au-

tonomous operation of the EtherCAT bus real-time loop.

Additionally, the driver package supports the user PLC to

manipulate EtherCAT data in real time, implements fast

real-time (single cycle) slave-to-slave communication

(skipping EPICS layer or PLC completely), features guar-

anteed one-shot trigger signals otherwise not supported by

EPICS and much more.

INTRODUCTION

For the modules and devices equipped with the Ether-

CAT bus interface [1], a general, real-time software inter-

face was needed for the integration in the existing accel-

erator control system, both for existing facilities like SLS

(Swiss Light Source) and HIPA (High Intensity Proton

Accelerator), and for facilities and systems being built at

the time this document was created, such as SwissFEL [2]

(Swiss X-Ray Free Electron Laser).

 First, we have tested the existing solutions, both relat-

ed and unrelated to our controls system of choice, EPICS.

Unfortunately, none of the existing commercial and non-

commercial solutions we have reviewed and tested was

able to cover and satisfy all of the requirements for the

EtherCAT support at PSI.

CONCEPTS

Providing full support for such a wide range of systems

and applications in a single package presented a problem

since not every requirement or possible usage scenario

could have been satisfied with a single piece of software.

EPICS control system support requires its own type of

dedicated device support driver. Unlike its kernel coun-

terparts, EPICS driver has to run in Linux userspace,

since EPICS system itself is a userspace application.

Aside from EPICS, the system has to support other types

of applications.

To make things more complicated, the applications that

are supposed to use the system are running in both us-

erspace and kernelspace. This, of course, requires distinc-

tively different structure of the supporting interfaces and

practically double the work needed to create the system

and maintain it later. Real-time applications can be creat-

ed to run in either userspace or kernelspace, which in

turns mean at least two separate local APIs had to be

created.

EtherCAT Data Addressing

To describe an address of a given EtherCAT data entry,

the following IDs have to be included:

• master number (since there can be multiple masters

running on the same host), • domain number (domain is an arbitrary, user-defined

collection of PDO (Process Data Object) entries

sharing the same buffer memory, EtherCAT pack-

ages and network exchange frame rate), • slave number (slave is simply another name for an

EtherCAT Module), • synchronization manager number (synchronization

managers, also known as SyncManagers or SMs,

group EtherCAT PDO objects by their exchange

direction (input/output) and other, manufacturer or

end-user defined criteria), • process data object number (process data objects, or

PDOs, group entries by some arbitrary purpose de-

fined by the manufacturer of the EtherCAT mod-

ule, or if a module supports it, by end-users) or

process data object entry number (process data ob-

ject entries, or PDO Entries, hold the actual data

exchanged by the module).

To solve this problem, we have devised a new address-

ing schema for EtherCAT data, as depicted in Fig. 1.

[ma.][db.]si.smj.pk.el

Master

Domain

Slave

SyncManager

PDO

PDO Entry

Figure 1: New schema for EtherCAT data addressing.

Master (ma) and domain (db) can be omitted when a=0

or b=0, i.e., when the first, default master and domain are

used. Similarly, the PDO entry (el), PDO (pk) or Sync-

Manager (smj) can be omitted as well (in that order),

when the user wants to address multiple entries included

in a larger parent container, instead of a single entry.

The possible modifiers or addressing modes (as of

v2.0.6) are: • [.o<offset>] - forced offset (in bytes). This allows

shifting of the starting address of the PDO entry in

the buffer, effectively allowing for partial reading of

the entries or using certain “tricks” to reach other-

wise unreachable or hard to reach content • [.b<bitnr>] – forced bit extraction, allows extrac-

tion of single bits from any larger PDO entry data,

regardless of its original type or length

• [.r<domregnr>] – domain register addressing,

replaces address modifiers s, sm, p and e, using rela-

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-WEP01

WEP01
22

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System and Component Integration

tive entry addressing inside a domain instead. This

allows end-user to simply address registers inside a

module, SyncManager or PDO without having to

remember or know all parts of the EtherCAT address,

or to know the internal structure of a module

• [.lr<entryrelnr>] – local register addressing,

replaces any (group) of the address modifiers s, sm

and p, allowing for local relative addressing of all

entries inside a slave, inside a SyncManager, or in-

side a PDO regardless of their actual parent container

or containers

• [t<type>] or [t=<type>] provides means for

forced typecasting or type override, changing the

default type of the data entry when applied. Many

typecasts are provided for this purpose, such as

int/uint (8-, 16-, 32-, 64-bits), and also float, double,

BCD, etc.

• [.l<length>] – length modifier, in bytes. Used

primarily to define the length of stringin/stringout

EPICS records, but can be used for any other buffer

extraction, also

EPICS SUPPORT

Since at PSI the EPICS control system is almost exclu-

sively used for the accelerators and device control, inte-

grating EPICS support was a top priority.

As an example of a typical system controlling Ether-

CAT components, the EPICS Core is running on the Ioxos

IFC 1210 Board [3], equipped with two separate Ethernet

interfaces, a PowerPC P2020 CPU and the VME Bus

backplane. The operating system used on these systems is

a custom built Linux with the appropriate PREEMPT-RT

patch.

Since EPICS has its own interface for device drivers, a

special EPICS userspace driver had to be developed,

using high priority real-time threads for the control loop.

Without the real-time capabilities provided by the

PREEMPT-RT Linux, timing and execution of the control

loop would be less reliable and hence not real-time capa-

ble. However, if somewhat increased level of jitter is

acceptable, the EtherCAT driver can run on a non-real-

time Linux, i.e., without the PREEMPT-RT Patch in-

stalled.

Another problem that we have to solve was the fact that

EtherCAT modules (slaves) are not always accepting the

write values –for example, a write request in a certain

cycle may fail for a number of reasons, and that means

that the Ethernet packet on a return trip may contain reg-

ister values which differ from the values stored in the

write buffer of the driver.

This means that not only the refreshed read values, but

also the write values has to be transferred back to the

write buffer in order to overwrite the obsolete and poten-

tially not matching values at the end of every cycle.

Yet, the newly received write values, unlike new read

values, cannot be simply copied over the old values in the

buffer, since that would effectively overwrite the new

write request values which were already accepted from

EPICS or other clients since the beginning of the last

cycle. To solve this, a multithreaded double-buffering

with the bit granularity write-mask for write requests was

implemented (Fig. 2).

Real-time

Control Loop

E
th

e
rC

A
T

 B
u

s

Read

Buffer

Write

Buffer

Wmask

Buf

Etherlab

Master

(modified)

PSI EtherCAT EPICS Driver

RW

Buffer

Wmask

Buf

EPICS

IRQ trigger

I/O Intr mode

Figure 2: PSI EPICS EtherCAT driver structure.

EPICS Records

All EPICS records use a single driver type (DTYP)

called ecat1 (PSI multi-client and EPICS EtherCAT driv-

er) ecat2 (PSI pure EPICS EtherCAT driver). Scan rates

for records can be set to any valid EPICS scan rate (from

parts of a second to multiple seconds), including Passive

and I/O Intr.

Register Values Typecasting

All of the extended addressing modes and modifiers,

including typecasting (t=type in Input or Output field of a

record), can be used in EPICS as well. Almost all combi-

nations of provided typecasts and modificators are al-

lowed. Using this feature it is possible to achieve high

level of flexibility even in EPICS, with its rigidly defined

record types.

For example, it is possible to extract a single bit from

an mbbi record without having to create additional calc

records, or having to recalculate the complete bit field

extracted from a record of any length. Type override and

other modifiers can be used for all record types, including

array-type records (aai/aao). Length modifier

(.l<length>) is used to define the length of the string

for string-type records (stringin/stringout).

GENERAL SUPPORT

To support the local and remote applications wishing to

connect to and use the EtherCAT hardware, the stand-

alone, multi-client version of the driver package was

created (ecat1). In this package three different subsystems

have been developed in order to allow application devel-

opers a highly flexible way to access the EtherCAT slaves

and their data: • Kernelspace API • Userspace API • Modules, SMs, PDOs and PDO entries as procfs di-

rectory/file structure

Additionally, the driver automatically constructs and

maintains procfs trees throughout its operation, and takes

care of double/triple triple-buffering and write-masking

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-WEP01

Control System and Component Integration
WEP01

23

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

process needed for data exchange with the client applica-

tions. Description of the each of the access modes is pre-

sented below.

Kernelspace API

Kernelspace API (Fig. 3) is a set of functions providing

the easy access to driver control loop parameters and

EtherCAT data entries.

The driver provides an internal real-time control loop

for buffering and exchange of TCP packets over Ethernet,

Timing of the control loop is based on the host high reso-

lution timers, but can be driven by an external source as

well, such as a timing system input.

Multiple kernelspace applications and/or drivers can

use the API.

Real-time

Control Loop

EtherCAT

Bus

Read

Buffer

Write

Buffer

Wmask

Buf

Etherlab

Master

(modified)

PSI kernel device driver

kernelspace userspace

RW

Buffer

Wmask

Buf

EtherCAT

kernelspace

API

EtherCAT

userspace

API

Timing

system

kernelspace

applications,

device drivers, ...

userspace

applications

Figure 3: PSI EtherCAT driver structure.

Userspace API

Userspace API (Fig. 3) is an API, i.e., a set of functions

providing (almost) the same functionality found in the

Kernel API. The functions library can be used statically or

dynamically with userspace applications as needed.

One of the Userspace applications that had to be cov-

ered is EPICS itself, so a native EPICS driver using this

API has been developed as a part of the package. When

this EPICS driver is used, both EPICS and other client

applications (running in both kernel- and userspace) can

be used concurrently.

EtherCAT Data in “procfs tree”

To allow even more applications to access the Ether-

CAT data, but without the need for an API or a dedicated

remote server and client, we have developed the concept

of “procfs trees” to represent the tree structure of Ether-

CAT modules and their components. procfs trees are a

series of virtual “directories” and “files” constructed on-

the-fly by the drivers in the Linux host procfs file system.

Each directory represents some kind of a parent con-

tainer, such as a slave, a SyncManager, a PDO, a domain

or a master (Fig. 4). Each virtual file in these directories

represents either a direct representation of an EtherCAT

PDO entry, or a utility file representing the data about the

system or about the containers present.

There is also a special cmd entry provided in the procfs

tree, allowing a CLI or application to interactively talk to

the driver and sending commands (for example, add entry,

add PDO, add slave entries, list data, etc.). Also, entry

data can be read or changed using the CLI as well.

Slave 0Slave 0 PDO 2PDO 2Master 0Master 0 Domain 0Domain 0

Entry 4Entry 4

SyncMgr 1SyncMgr 1

SyncMgr 0SyncMgr 0

Entry 27Entry 27

Entry 140Entry 140

Entry 172Entry 172

Entry 0Entry 0

Entry 1Entry 1

Entry 2Entry 2

PDO 0PDO 0

Entry 0Entry 0

......

Entry 26Entry 26

PDO 4PDO 4

Entry 3Entry 3

Entry 19Entry 19

......

Entry 349Entry 349

Domain 1Domain 1 Slave 1Slave 1 SyncMgr 2SyncMgr 2 PDO 1PDO 1

Entry 0Entry 0

……

Slave 3Slave 3 SyncMgr 6SyncMgr 6

Entry 7Entry 7

PDO 5PDO 5

procfs tree

Figure 4: procfs tree general structure.

EXTENSIONS AND UTILITIES

The PSI EtherCAT support package offers several ex-

tensions and tools. The most important ones are described

below.

Slave-to-slave Communication

It is often the case that the data on the EtherCAT bus

has to be transferred from one EtherCAT device or mod-

ule to another, preferably in real-time. For this kind of

communication, two different directions of transfer can be

observed, upstream and downstream.

Upstream slave-to-slave communication is transfer of

data from a module further away on the EtherCAT bus

from the master to a module closer to the master. Down-

stream communication is the transfer from a closer mod-

ule to one further “down the stream” from the master. The

stream in this case represents the path an EtherCAT TCP

packet is travelling, and its direction remains constant as

long as there are no physical changes in the bus configu-

ration and modules present.

From real time point of view, this communication is

highly deterministic, yet not identical – downstream

communication (send on one module, receive on another)

can, theoretically, be done in the same bus cycle, hence

costing exactly zero bus cycles to execute. Upstream

communication, due to the way TCP packets are handled

by the EtherCAT, will take exactly one bus cycle to com-

plete.

We have decided to implement the slave-to-slave com-

munication (sts) with constant cost of completion, in this

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-WEP01

WEP01
24

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System and Component Integration

case, exactly one bus cycle for both upstream and down-

stream communication requests.

In EPICS, sts-communication transaction requests can

be inserted as follows:

ecat2sts <source> <destination>

For example:

ecat2sts r8 r0

ecat2sts r2.b0 r0.b6

ecat2sts s2.sm0.p1.e0 s1.sm0.p1.e0

ecat2stss3.sm3.p0.e10.b3 s4.sm2.p1.e0.b7

As can be seen in examples above, any valid addressing

mode and/or modifier can be used for source and destina-

tion. API access is done by calling a function to register a

transaction request, but the addressing remains the same.

Support for Programmable EtherCAT Modules

The PSI EtherCAT drivers and utilities also support set-

ting up and live programming of programmable Ether-

CAT modules and devices, such as, for example, Ether-

CAT network bridges (EL6692, EL6695), motor control-

lers, and so on.

From EPICS, any module can be programmed by using

ecat2cfgslave set of commands, for example:

ecat2cfgslave sm <arguments…> - configures

one Sync Manager for the given slave.

ecat2cfgslave sm_clear_pdos <arguments…> -

clears (i.e., deletes) all PDOs for a given Sync Manager

(SM).

ecat2cfgslave sm_add_pdo <arguments…> -

adds a PDO with index pdoindex to a Sync Manager.

ecat2cfgslave pdo_clear_entries <argu-

ments…> - clears (i.e., deletes) all PDO entries associated

with the given PDO.

ecat2cfgslave pdo_add_entry <arguments…> -

creates a new PDO entry and associates it with the given

PDO.

Programmable network bridge EtherCAT modules,

such as EL6692 or EL6695, have their own, simplified

commands for programming entries:

ecat2cfgEL6692 <netbridge_nr> in/out
<numberofbits>

Support for User PLC in Dynamic Libraries

During the development and testing of EtherCAT driv-

ers, the need for user-defined PLCs has been identified. In

addition to slave-to-slave communication mentioned

earlier, users sometimes wanted to be able to directly

manipulate the EtherCAT data themselves.

A possibility to create a C/C++ based PLC, placed in a

user-created dynamic library that is automatically detect-

ed and loaded, if needed was added.

This way, there is no need to change and recompile the

driver directly, user only has to create a dynamic library

with certain functions present, and it will be called (with a

callback-function to prevent real-time jitter), inside each

EtherCAT cycle.

Now the users have the possibility to directly manipu-

late EtherCAT module values in each cycle, in real-time,

without the need of a slow, interpreted script based solu-

tion, or doing it using EPICS record, which is also an

order of magnitude slower than our solution.

CONCLUSION

In this paper, we have presented the PSI EtherCAT

driver packages and described the package components.

The system using ecat2 driver is already successfully

used at PSI for several years, for all systems controlling

EtherCAT modules from EPICS and from real-time appli-

cations. The other version of the driver, ecat1, is currently

undergoing final testing at PSI under full-load and real-

life conditions.

As is usual with such systems, it is to be expected that

changes will be made to this package in the future to

accommodate needs and new requirements of expanding

number of users of the system, the existing features will

be extended and streamlined and the new features and

components will be added.

REFERENCES

[1] Beckhoff GmbH, http://www.beckhoff.de/.

[2] Paul Scherrer Institut (PSI), SwissFEL,

http://www.psi.ch/media/swissfel/.

[3] Ioxos Technologies, IFC 1210 – P2020 Intelligent FPGA

Controller, http://www.ioxos.ch/.

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-WEP01

Control System and Component Integration
WEP01

25

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

