
!CHAOS GENERAL STATUS REPORT

Alessandro Stecchi, Claudio Bisegni, Paolo Ciuffetti, Antonio De Santis, Giampiero Di Pirro,
Alessandro D'Uffizi, Francesco Galletti, Riccardo Gargana, Andrea Michelotti, Massimo Pistoni,

Dario Spigone, INFN/LNF, Frascati, Rome, Italy
Luciano Catani, INFN - Roma Tor Vergata, Rome, Italy

Abstract
!CHAOS[1] (Control system based on Highly Ab-

stracted and Open Structure) is now mature and is being
employed in real operational contexts. A dedicated infra-
structure, recently installed at the LNF Computer Centre,
houses the framework and provides control services to dif-
ferent LNF installations. The !CHAOS native capability of
fast storage, based on the use of a nonrelational database,
has been finalized and tested with applications demanding
high bandwidth. Thanks to its scalable design, the fast stor-
age allows to accommodate multiple sources with sub mil-
lisecond timing. The EU (Execution Unit) node has also
been delivered and turned out to be a "Swiss Army knife"
for processing both live and stored data, inserting feed-
backs and in general for correlating data acquired by the
CU (Control Units) nodes. A key feature of the EU is a
plugin mechanism that allows to easily integrate different
programming and scripting languages such as LUA, C++,
Python, also exploiting the ROOT framework, the well
known scientific tool from CERN. A comprehensive de-
scription of the !CHAOS evolution, of its performances
and of its use, both in scientific and industrial contexts, is
presented.

INTRODUCTION
The !CHAOS project started with the ambition to create

an innovative control framework exploiting software tech-
nologies developed for high performance web services and
therefore capable to handle millions of users accessing the
services and interacting with one another.

The framework was designed to be scalable and cloud
aware and, as a result, suitable for application in many dif-
ferent contexts, beyond those required by the scientific
community.

The right way to look at !CHAOS is as a SaaS that spe-
cializes in controls. In fact, we often refer to it with the ne-
ologism of Control as a Service (CaaS).

Moreover, !CHAOS ranks in that niche — still partially
unexplored — between Control Systems and DAQ Sys-
tems. Indeed, the horizontal scalability of the framework
allows fast storage for multiple data sources with sub-mil-
liseconds timing, granting a centralized time synchroniza-
tion among them of the order of milliseconds. This feature
— embedded by design in the !CHAOS architecture — is
fundamental to make cross correlations among many het-
erogeneous data and also opens to new applications such
as diagnostic, maintenance and predictive maintenance of
large scientific facilities and industrial plants.

Data handling is also greatly eased by the adoption of
non-relational databases and BSON/JSON data representa-
tion throughout the system.

The !CHAOS framework is currently used both in indus-
trial and scientific collaborations.

SYSTEM OUTLINE

Back-end Layer
The framework relies on back-end services which pro-

vide core services such as data caching and permanent stor-
age. The back-end services are:
 the Distributed Object Caching (DOC) that continu-

ously store the latest datasets representing all the phys-
ical and abstract entities acquired or computed by the
system;

 the Distributed Object Storage (DOS) that enqueues
the above datasets in a persistent database;

 the metadata storage that holds configurations and
preferences data — both of the system itself and the
elements under control — in a persistent database.

The key-features of all the services are that they (i) build
upon non-relational logic and (ii) handle datasets consist-
ing of BSON objects (which ultimately are blobs of bytes).
As a result, different data structures can be directly stored
as key-value datasets, thus without any extra data parsing
or manipulation and the need of setting up many different
table structures. Moreover, the inherent schemaless nature
of non-relational databases, greatly speed-up, as in the case
of DOS service, the writing of permanent data, for the ben-
efit of the !CHAOS DAQ performance.

Each of the framework’s core services is not binded to
any particular software technology or vendor. Different
commercial, or open source, software can be adopted — as
explained below — to implement the back-end functional-
ity, the choice depending on the specific needs of the con-
text. On the contrary, it is essential that DOC, DOS and
metadata storage services can run as multiple instances on
multiple machines, which is a prerequisite for the horizon-
tal scalability of !CHAOS.

The current release of !CHAOS employs Couchbase®
for the DOC and MongoDB© for the DOS and metadata
storage. Similar products have been successfully employed
and other are currently under evaluation (such as redis and
Cassandra).

Both Couchbase and MongoDB deliver distributed archi-
tecture and provide compute, storage, and processing
workload partitioning to meet ever-changing requirements.

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-WEC5

Control System and Component Integration
WEC5

17

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Abstraction Layer
On top of the back-end layer lies the abstraction layer

which provides !CHAOS services and a common applica-
tion interface to the framework core services (Fig. 1).
!CHAOS services interface with the back-end through ded-
icated drivers so that, if you want to use different products,
it is sufficient to replace the related interface drivers. The
!CHAOS services are:
 the Data Service (DS) that manages the data flow to

and from the DOC and DOS services;
 the Metadata Service (MDS) that manages storage and

retrieval of metadata to and from the DOS service.
Practically, both DS and MDS act as routers: they dy-

namically dispatch and gather data to and from the nodes
of the back-end, including, bandwidth optimization, work-
load balance and handling of back-end nodes failure. This
design guarantees the scalability of the system and even
enhances it, as the balancing logics exerted by the DS and
MDS drivers can be optimized to meet particular needs.

Figure 1: Layout of the !CHAOS framework.

The DOC & DOS services are implemented by Couch-
base & MongoDB. The DS & MDS adapt to different back-
end services by changing the corresponding drivers. In the
applications layer, the segmented arrows indicate that the
node can operate from outside the !CHAOS cloud, whilst
the countinuous ones indicate that — for optimal perfor-
mance — the node has to be within the cloud.

Applications Layer
Above the abstraction layer there is the applications

layer, where different kinds of nodes perform the functions
of raw data production, calculation and correlation, access
to data, system metric and access from external applica-
tions. A short description of the !CHAOS main nodes is
presented here below.

Control Unit When it comes to control systems, the
tasks of acquisition and actuation of devices are among the
most important because they are at the heart of the whole
management of a plant. The CUs is the node that continu-
ously acquire data from a device and operate it upon com-
mands or given conditions. In !CHAOS, a device is set out
by a virtualization process that — starting from a physical

object — concludes with the definition of a set of mean-
ingful variables (dataset) that fully describe it from the van-
tage point of the control and a set of actions you want to be
able to perform on it (commands).

Each device is managed by a dedicated CU that contin-
uously acquires it, refreshes its dataset, associates it with a
timestamp and pushes it — through the DS — into the
DOC and DOS. The frequencies of those pushes can be set
independently. The CU can also perform advanced data
processings on the spot and fill the dataset with derived
quantities or complex functions result (FFT, pedestal cal-
culation, mobile average, etc...).

Each remote command coming from a UI/EU/Control
application/MDS is enqueued in a priority queue and exe-
cuted accordingly. For every command the programmer
can define four different handlers that encode four different
states of a command: start, acquire, feedback and end. Typ-
ically, a command is in start at the beginning, then it loops
at a given frequency between acquire (device acquisition)
and feedback (device actuation) and exit on end.

Execution Unit The Execution Unit node (EU) is a
strong point of !CHAOS being a very convenient way to
inject processes in the system and have them execute in an
standardized and managed manner. An EU is structurally
similar to a CU with the difference that it doesn't access
hardware but data already acquired, instead. An EU can re-
ceive commands, issue multiple commands to multiple
EUs and CUs and access both live and stored data. These
capabilities make it a very versatile tool that can execute
automatic feedbacks, make correlation among live and
stored data, execute background analysis on big quantities
of stored data, build and issue macro-commands, imple-
ment complex procedures and so on.

In the current version of !CHAOS the EUs can access
data through the DS from DOC and DOS so that they are
very similar to batch processes. Developers are working to
implement a stream processing mode where EU will be
connected among other nodes (CU, EU) through input and
output ports realizing this way processing pipelines where
EUs are able to check-in to one or more CUs or EUs and
directly receive continuous streamings of live datasets
from them, which will dramatically increase the bandwidth
and — as a result — their responsiveness. Currently an EU
algorithm can be expressed in C++ native language, CERN
ROOT or lua scripting. Next developments envision to in-
clude python and nodejs scripting. To support streaming
processing and total abstraction of EU processing algo-
rithms we’ll support a graphical tool where the user can
build its processing pipeline simply connecting “boxes”
(CU-EU, EU-EU) connecting input terminals of a EU to
output terminals of a CU, EU.

User Interface The User Interface node (UI) is where
data are presented and user commands are issued. UI nodes
can query the MDS for information about dataset structure
and command set of any element, which allows for a dy-
namic adjustment of the control windows.

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-WEC5

WEC5
18

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System and Component Integration

REST Server The REST server maps !CHAOS C++
APIs to HTTP/REST JSON APIs allowing external appli-
cations to access I/O, control and administration services
of the framework. The !CHAOS BSON internal data rep-
resentation is well suited for the implementation of WEB
services based on JSON notation (since BSON is just a
standardized binary serialization of JSON). Any external
application can act as a CHAOS node (CU, EU, UI) ac-
cording to needs. Most popular development environments
have HTTP support for binding and integration of
!CHAOS REST API. Currently !CHAOS has bindings for
MathLab, LabVIEW, JavaScript, Python (basic), which al-
lows users to write their own control, analysis or presenta-
tion application using the preferred environment.

Analysis Framework The CERN ROOT analysis
framework with native C++ !CHAOS APIs is available
both as a standalone application and as a plugin able to ex-
ecute scripts from within an EU. The combination of a HEP
well-known analysis tool with a Control System with DAQ
capability, allows users to develop new complex and effi-
cient control and data analysis algorithms.

HARDWARE INFRASTRUCTURE
As mentioned above, the ideal type of a !CHAOS instal-

lation is that of an infrastructure fit for use as a cloud and
therefore offer a CaaS service to both local and remote us-
ers. Our goal was therefore to set up an installation able to
give a boost to the framework, leading it beyond the proto-
typing and testing phases.

We decided to utilize all our financial resources in laying
solid foundations for the infrastructure and use — on top
of these — hardware that can be updated later.

We obtained a dedicated room from our Computer Cen-
tre with buffered power supply and air conditioning and
acquired a 32 ports core switch CISCO Catalist 4500 X and
six 48 ports CISCO C2960X for the network backbone.

Then we populated 8 racks with disused hardware ob-
tained by courtesy of CERN, totalling 472 logical cores,
824 GB RAM and 500 TB HDs.

This hardware came out of production at the end of 2013,
which means that, despite being discontinued, it is still able
to fulfill the function of a pilot installation.

The infrastructure houses:
 a production cluster made of 8 servers (each with 24

logical cores, 72 GB RAM);
 a pre-production cluster made of 16 servers (each with

8 logical cores, 16 GB RAM);
 a development cluster made of 16 servers (each with 8

logical cores, 16 GB RAM);
 a services cluster made of 3 servers (each with 8 logi-

cal cores, 8 GB RAM);
 6 spare machines (each with 16 logical cores, 16 GB

RAM) not configured;
 6 NetApp storage servers with multi 10Gb/s interfaces

and ~500 TB of available disk space (NFS exported).
OVirt was chosen as a hypervisor because it is an open-

source product and proved — in other projects — to be re-
liable and scalable, features essential for the !CHAOS

framework. Two hypervisors have been installed: one for
production and services and one for pre-production and de-
velopment so as to keep separate the management of the
two groups of physical and virtual machines.

The guest machines are installed with different Linux
distributions: Ubuntu Server for the MongoDB nodes and
CentOS for all the other services.

The infrastructure uptime is 100% since its start-up in
October 2017.

As described below, the infrastructure already provides
control services to different LNF scientific installations.
We are also going to open it to technological installations,
small laboratories and external users working on the vari-
ous lines of our accelerators.

SOFTWARE MANAGEMENT
!CHAOS is a project released as opensource software

under the EUGPL 2.0 license. The framework and all its
processes are entirely developed in C++ (CXX11 & C98)
using CMAKE (> 3.0) as build system. The supported
compilers are gcc (≥4.8) and llvm. !CHAOS compiles on
most Linux distributions and MacOS.

Continuous Integration
The adopted agile workflow envisages that new devel-

opments add features and/or fix bugs, namely the last sta-
ble release must always be an improvement respect to the
previous one.

To guarantee this simple — but fundamental — assump-
tion, we have created a set of top-down non-regression
tests, spanning from UIs, CUs and EUs software up to
lower level services.

The source code is stored on the INFN gitlab [2] server
and the whole continuous integration workflow is handled
by many runner machines that allow you to build and exe-
cute all the tests several time a day.

Each time a git merge request is issued, a set of scripts
— pipelined by gitlab — executes all those tests for the
different supported OSs. Should any test fail, the merge re-
quest is rejected, otherwise the code is merged.

For the static analysis of the code, we use suitable wrap-
pers that are called at compilation time and generate re-
ports. Those reports are then automatically uploaded on the
cloud services Coverity Scan and SonarCloud which pro-
vide an excellent static analysis of the source code (Cover-
ity Scan) together with a more in-depth analysis (So-
narCloud) and permit to trust the quality of the written
code. By adopting a continuos integration method, that au-
tomatically supervises code changes, dramatically en-
hances productivity also making possible a truly concur-
rent development.

SYSTEM PROFILE
Regarding the performance of mongoDB on the pre-pro-

duction infrastructure, the system showed no evident bot-
tlenecks. Since the available hardware is not updated and
has limited resources, as the number of MongoDB shards

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-WEC5

Control System and Component Integration
WEC5

19

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

increases, the tests tend to a limit that prevents verifying
the real potential of both architecture and back-end.

Nevertheless, before reaching these limits, it has been
verified that the throughput increases proportionally to the
number of shards.

It seems evident that a consistent measure of the system
performance will be possible only by utilizing physical ma-
chines of a suitable rank.

Measurements
The frequency of I/O accesses it has been measured in a

minimal !CHAOS installation on a server Intel-i7 - 16GB
- 256 SSD - 3.6 GHz, composed by one Couchbase com-
munity-3.1.3 (as DOC) and one MongoDB 3.4.15 (as
DOS), provided as docker nodes, plus a MDS node.

The measure consists in accessing the DOC & DOS ser-
vices through the DS, from a minimal client written on pur-
pose. The client mimes a producer node (CU, EU, Ana-
lisys) on pushes and a consumer node (EU, UI, Analisys)
on pulls. All the measures are calculated as an average of
1000 accesses and repeated for different number of clients
(in different thereads) running in parallel (Figs. 2 and 3).

Figure 2: Push frequency vs. size of the payload at different
numbers of threads.

Figure 3: Pull frequency vs. size of the payload at different
numbers of threads.

It can be noticed that the system is able to sustain the
throughput as the number of threads increases. For higher
numbers of threads, the load of the server gets too high and
invalidate the measure.

By the end of November 2018, with the support of Mon-
goDB Inc. Team a pre-production setup of MongoDB on
physical machines will be arranged and will allow a quan-
titative measure for a multi-node configuration.

USE CASES
Beside the use of !CHAOS as control system in pilot in-

stallations at INFN-LNF: DAFNE transfer line, BTF, ac-
cumulator orbit [3]. In the following two paragraphs we
present two further use cases with completely different ob-
jectives which use !CHAOS DAQ and analysis features.

Scientific
An independent data acquisition setup has been designed

and realized in order to implement the fast luminosity mon-
itor in view of the DAFNE future physics runs. Besides the
total instantaneous luminosity the new diagnostic measures
also the Bunch-by-Bunch luminosity. The following de-
scription focuses the attention on the systems engineering
(for the scientific part refer DAFNE Luminosity Monitor
[4].

Figure 4: DAQ schema.

The new DAQ subsystem (Fig. 4) is composed by a
16 channels TDC (CAEN775N), 16 channels QDC
(CAEN977), and a FPGA (CAENV1495) with few regis-
ters programmed as counters. A !CHAOS CU, running on
an old VME Controller (VMIC linux 2.6.30), controls and
acquires those devices at variable rates from 0 to 3KHz
(depending on the collisions rate). The online computation
of the Bunch-by-Bunch luminosity is performed by a
ROOT application analysis connected with !CHAOS that
correlates the data coming from the luminometer DAQ sys-
tem with the data coming from the bunch charge monitor
(acquisition 4096 points of a Tektronix scope).

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-WEC5

WEC5
20

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Control System and Component Integration

Figure 5: New (red) vs legacy luminometer (blue).

To monitor and check the results produced by the new
DAFNE luminosity monitor !CHAOS also acquires the
legacy luminosity monitor (Fig. 5), which updates every 15
s, and on-demand can also store beam camera frames at
rate of 70 fps (Basler 640x480 8 bit) as overall cross check.
All the correlations and checks of unrelated devices, with-
out a common trigger or time, are made possible because
the centralized !CHAOS infrastructure guarantees a time
synchronization of the storicized datasets in the range of
few milliseconds.

The possibility to have available many data coming from
multiple sources that can be plotted and correlated each in
real time, and the possibility to also control most of them
greatly improved the productivity of the scientist team.

Industrial
INFN together with a world leader in the design and

manufacture of automatic machines for the processing and
packaging of pharmaceuticals, cosmetics, food, tea and
coffee, is involved in a project named mAxima. The aim of
this project is to setup a cloud aware infrastructure to ac-
quire data from production line machines and perform pre-
dictive diagnostic to optimize their working point and pre-
vent unwanted stops.

Figure 6: mAxima project: schema of DAQ.

The company provided to sensorize one of their package
machines to measure: acceleration, temperature and pres-
sure of some parts, and to acquire the images of pills that
are going to be packaged. INFN provided a dedicated
!CHAOS infrastructure suited to host processing predictive
algorithms and their data flow (Fig. 6). Moreover created a

!CHAOS support for Grafana [5]: an environment to create
impressive WEB dashboards (Fig. 7). Since the real pack-
aging machine was often not available, a synthetic flow of
data were produced by a simulator able to inject respec-
tively trends of errors in acceleration, pressure, tempera-
ture and different shapes of pills with zero or more defects,
thorough this simulator we also tried algorithms to forecast
failures and categorize images of bad and good pills.

Figure 7: Grafana WEB dashboard.

Currently we have hosted at INFN-LNF the infrastruc-
ture that is able to store the flow of data and produce real
time forecast of failures of the given subset of parts, all
these data are presented in a customizable WEB dashboard.

CONCLUSION
!CHAOS is a reality and has evolved from a mere Con-

trol System to a flexible framework offering also:
 a native DAQ system for processes with timing > 100

µs;
 a computing framework suitable to process data —

tagged evenly— and produce feedbacks;
 a virtually unlimited horizontal scalability in terms of

storage, memory and processing power;
 a cloud aware Control as a Service platform, suitable

for different contexts (scientific, industrial, social, ed-
ucational, consumer’s).

REFERENCES
[1] L. Catani et al., “Introducing a New Paradigm for Accelera-

tors and Large Experimental Apparatus Control Systems”,
Phys. Rev. ST Accel. Beams, vol. 15, pp. 112804, 2012.

[2] https://about.gitlab.com/

[3] C.Bisegni et al., “!Chaos Status and Evolution“, in Proc.
IPAC'15, Richmond, VA, USA, May 2015.

 doi: 10.18429/JACoW-IPAC2015-MOPHA046

[4] A. De Santis et al., “DAΦNE Luminosity Monitor”, in Proc.
IPAC'18, Vancouver, BC, Canada, Apr.-May 2018, pp. 338-
340. doi:10.18429/JACoW-IPAC2018-MOPMF089

[5] https://grafana.com

1
1.2

1.4
1.6

1.8
2

2.2
Day Time [hr]

0 50 100 150 200 250 300 350 400 450R a t e [H z]

KLOE-2

CCALT

12th Int. Workshop on Emerging Technologies and Scientific Facilities Controls PCaPAC2018, Hsinchu, Taiwan JACoW Publishing
ISBN: 978-3-95450-200-4 doi:10.18429/JACoW-PCaPAC2018-WEC5

Control System and Component Integration
WEC5

21

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

